题名 | Data-Driven Methods for Travel Time Estimation: A Survey |
作者 | |
DOI | |
发表日期 | 2023
|
会议名称 | IEEE 26th International Conference on Intelligent Transportation Systems (ITSC)
|
ISSN | 2153-0009
|
ISBN | 979-8-3503-9947-9
|
会议录名称 | |
页码 | 1292-1299
|
会议日期 | 24-28 Sept. 2023
|
会议地点 | Bilbao, Spain
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Travel time estimation is a crucial component of intelligent transportation systems, affecting various applications such as navigation, ride-hailing, and route planning. Traditional methods for travel time estimation rely on subjective judgments, limited data sources, and straightforward modeling techniques. Owing to recent advances in data mining and machine learning, numerous data-driven methods are adopted to address the problem that occurred in traditional schemes, which demonstrate exceptional performance. In this paper, we present a comprehensive survey of data-driven methods for travel time estimation, encompassing application scenarios, spatial-temporal modeling approaches, and data representation learning techniques. To support and promote further research in this field, we provide a valuable list of open data sources and source codes, offering researchers a solid foundation for their future endeavors. Furthermore, this survey discusses emerging trends and key challenges faced by the research community, such as the integration of real-time data streams and the use of uncertainty estimation. We also explore the potential impact of these advancements on transportation systems, highlighting opportunities for improvement and innovation. To the best of our knowledge, this work is among the first to offer a comprehensive, in-depth review of data-driven methods for travel time estimation, providing researchers and practitioners with a valuable reference in the field. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Stable Support Plan Program of Shenzhen Natural Science Fund[20220815111111002]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Transportation
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Transportation Science & Technology
|
WOS记录号 | WOS:001178996701045
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10422502 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/719097 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Research Institute for Trustworthy Autonomous Systems, Southern University of Science and Technology, China 2.Department of Computer Science, University of York, United Kingdom |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhipeng Zheng,Yongchao Ye,Yuanshao Zhu,et al. Data-Driven Methods for Travel Time Estimation: A Survey[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1292-1299.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论