中文版 | English
题名

Data-Driven Methods for Travel Time Estimation: A Survey

作者
DOI
发表日期
2023
会议名称
IEEE 26th International Conference on Intelligent Transportation Systems (ITSC)
ISSN
2153-0009
ISBN
979-8-3503-9947-9
会议录名称
页码
1292-1299
会议日期
24-28 Sept. 2023
会议地点
Bilbao, Spain
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Travel time estimation is a crucial component of intelligent transportation systems, affecting various applications such as navigation, ride-hailing, and route planning. Traditional methods for travel time estimation rely on subjective judgments, limited data sources, and straightforward modeling techniques. Owing to recent advances in data mining and machine learning, numerous data-driven methods are adopted to address the problem that occurred in traditional schemes, which demonstrate exceptional performance. In this paper, we present a comprehensive survey of data-driven methods for travel time estimation, encompassing application scenarios, spatial-temporal modeling approaches, and data representation learning techniques. To support and promote further research in this field, we provide a valuable list of open data sources and source codes, offering researchers a solid foundation for their future endeavors. Furthermore, this survey discusses emerging trends and key challenges faced by the research community, such as the integration of real-time data streams and the use of uncertainty estimation. We also explore the potential impact of these advancements on transportation systems, highlighting opportunities for improvement and innovation. To the best of our knowledge, this work is among the first to offer a comprehensive, in-depth review of data-driven methods for travel time estimation, providing researchers and practitioners with a valuable reference in the field.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Stable Support Plan Program of Shenzhen Natural Science Fund[20220815111111002]
WOS研究方向
Automation & Control Systems ; Computer Science ; Transportation
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Transportation Science & Technology
WOS记录号
WOS:001178996701045
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10422502
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/719097
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Research Institute for Trustworthy Autonomous Systems, Southern University of Science and Technology, China
2.Department of Computer Science, University of York, United Kingdom
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhipeng Zheng,Yongchao Ye,Yuanshao Zhu,et al. Data-Driven Methods for Travel Time Estimation: A Survey[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1292-1299.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhipeng Zheng]的文章
[Yongchao Ye]的文章
[Yuanshao Zhu]的文章
百度学术
百度学术中相似的文章
[Zhipeng Zheng]的文章
[Yongchao Ye]的文章
[Yuanshao Zhu]的文章
必应学术
必应学术中相似的文章
[Zhipeng Zheng]的文章
[Yongchao Ye]的文章
[Yuanshao Zhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。