中文版 | English
题名

Multi-View Attention Learning for Residual Disease Prediction of Ovarian Cancer

作者
DOI
发表日期
2023
ISSN
1062-922X
ISBN
979-8-3503-3703-7
会议录名称
页码
653-658
会议日期
1-4 Oct. 2023
会议地点
Honolulu, Oahu, HI, USA
摘要
In the treatment of ovarian cancer, precise residual disease prediction is significant for clinical and surgical decision-making. However, traditional methods are either invasive (e.g., laparoscopy) or time-consuming (e.g., manual analysis). Recently, deep learning methods make many efforts in automatic analysis of medical images. Despite the remarkable progress, most of them underestimated the importance of 3D image information of disease, which might brings a limited performance for residual disease prediction, especially in small-scale datasets. To this end, in this paper, we propose a novel Multi-View Attention Learning (MuVAL) method for residual disease prediction, which focuses on the comprehensive learning of 3D Computed Tomography (CT) images in a multi-view manner. Specifically, we first obtain multi-view of 3D CT images from transverse, coronal and sagittal views. To better represent the image features in a multi-view manner, we further leverage attention mechanism to help find the more relevant slices in each view. Extensive experiments on a dataset of 111 patients show that our method outperforms existing deep-learning methods.
关键词
学校署名
第一
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10394014
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/719102
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
3.Department of Radiology, First Affiliated Hospital of USTC, Hefei, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Xiangneng Gao,Shulan Ruan,Jun Shi,et al. Multi-View Attention Learning for Residual Disease Prediction of Ovarian Cancer[C],2023:653-658.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiangneng Gao]的文章
[Shulan Ruan]的文章
[Jun Shi]的文章
百度学术
百度学术中相似的文章
[Xiangneng Gao]的文章
[Shulan Ruan]的文章
[Jun Shi]的文章
必应学术
必应学术中相似的文章
[Xiangneng Gao]的文章
[Shulan Ruan]的文章
[Jun Shi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。