中文版 | English
题名

Online Ensemble of Ensemble OVA Framework for Class Evolution with Dominant Emerging Classes

作者
DOI
发表日期
2023
会议名称
23rd IEEE International Conference on Data Mining (IEEE ICDM)
ISSN
1550-4786
ISBN
979-8-3503-0789-4
会议录名称
页码
968-973
会议日期
1-4 Dec. 2023
会议地点
Shanghai, China
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
In real-world data stream mining, the composition of classes undergoes unpredictable changes, giving rise to the challenge of class evolution, encompassing class emergence, disappearance, and reoccurrence. However, most existing approaches require the storage of past data to adapt their model. While some studies have focused on online learning approaches, they are built on an underlying assumption that the number of instances in any single class is consistently less than the sum of other classes. This assumption becomes invalid when a class emerges with a dominant amount, e.g., news about a pandemic outbreak, harming the performance of existing methods. In this paper, we thoroughly investigate this scenario and propose a novel online ensemble of ensemble one-versus-all framework (EWE) to handle class evolution adaptively. The novel ensemble of ensemble architecture boosts diversity in each one-versus-all classifier. A novel adaptive model adaptation method is also designed to balance the error feedback between the emerging class and the other classes. A confidence-triggered fallback mode is integrated to prevent performance drop due to a wrong decision regarding class disappearance. Experimental studies are conducted on both synthetic and real-world data streams to show that our method achieves higher accuracy in diverse class evolution scenarios compared with the state-of-the-art method, particularly when classes emerge with dominant amounts.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Australian Research Council (ARC)["DP210101093","DP220100803"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号
WOS:001165180100101
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10415801
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/719103
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.CIBCI Lab, School of Computer Science, University of Technology, Sydney, Australia
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhi Cao,Shuyi Zhang,Chin-Teng Lin. Online Ensemble of Ensemble OVA Framework for Class Evolution with Dominant Emerging Classes[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:968-973.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhi Cao]的文章
[Shuyi Zhang]的文章
[Chin-Teng Lin]的文章
百度学术
百度学术中相似的文章
[Zhi Cao]的文章
[Shuyi Zhang]的文章
[Chin-Teng Lin]的文章
必应学术
必应学术中相似的文章
[Zhi Cao]的文章
[Shuyi Zhang]的文章
[Chin-Teng Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。