题名 | Online Ensemble of Ensemble OVA Framework for Class Evolution with Dominant Emerging Classes |
作者 | |
DOI | |
发表日期 | 2023
|
会议名称 | 23rd IEEE International Conference on Data Mining (IEEE ICDM)
|
ISSN | 1550-4786
|
ISBN | 979-8-3503-0789-4
|
会议录名称 | |
页码 | 968-973
|
会议日期 | 1-4 Dec. 2023
|
会议地点 | Shanghai, China
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | In real-world data stream mining, the composition of classes undergoes unpredictable changes, giving rise to the challenge of class evolution, encompassing class emergence, disappearance, and reoccurrence. However, most existing approaches require the storage of past data to adapt their model. While some studies have focused on online learning approaches, they are built on an underlying assumption that the number of instances in any single class is consistently less than the sum of other classes. This assumption becomes invalid when a class emerges with a dominant amount, e.g., news about a pandemic outbreak, harming the performance of existing methods. In this paper, we thoroughly investigate this scenario and propose a novel online ensemble of ensemble one-versus-all framework (EWE) to handle class evolution adaptively. The novel ensemble of ensemble architecture boosts diversity in each one-versus-all classifier. A novel adaptive model adaptation method is also designed to balance the error feedback between the emerging class and the other classes. A confidence-triggered fallback mode is integrated to prevent performance drop due to a wrong decision regarding class disappearance. Experimental studies are conducted on both synthetic and real-world data streams to show that our method achieves higher accuracy in diverse class evolution scenarios compared with the state-of-the-art method, particularly when classes emerge with dominant amounts. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Australian Research Council (ARC)["DP210101093","DP220100803"]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:001165180100101
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10415801 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/719103 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 2.CIBCI Lab, School of Computer Science, University of Technology, Sydney, Australia |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhi Cao,Shuyi Zhang,Chin-Teng Lin. Online Ensemble of Ensemble OVA Framework for Class Evolution with Dominant Emerging Classes[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:968-973.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论