题名 | Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction |
作者 | |
通讯作者 | He Kong |
DOI | |
发表日期 | 2023-09-24
|
会议名称 | 2023 IEEE 26th Int. Conf. on Intelligent Transportation Systems (ITSC)
|
ISSN | 2153-0009
|
ISBN | 979-8-3503-9947-9
|
会议录名称 | |
页码 | 4360-4366
|
会议日期 | 24-28 Sept. 2023
|
会议地点 | Bilbao, Spain
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Predicting pedestrian motion trajectories is crucial for path planning and motion control of autonomous vehicles. Accurately forecasting crowd trajectories is challenging due to the uncertain nature of human motions in different environments. For training, recent deep learning-based prediction approaches mainly utilize information like trajectory history and interactions between pedestrians, among others. This can limit the prediction performance across various scenarios since the discrepancies between training datasets have not been properly incorporated. To overcome this limitation, this paper proposes a graph transformer structure to improve prediction performance, capturing the differences between the various sites and scenarios contained in the datasets. In particular, a self-attention mechanism and a domain adaption module have been designed to improve the generalization ability of the model. Moreover, an additional metric considering cross-dataset sequences is introduced for training and performance evaluation purposes. The proposed framework is validated and compared against existing methods using popular public datasets, i.e., ETH and UCY. Experimental results demonstrate the improved performance of our proposed scheme. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Science, Technology, and Innovation Commission of Shenzhen Municipality, China[ZDSYS20220330161800001]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Transportation
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Transportation Science & Technology
|
WOS记录号 | WOS:001178996704059
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10421989 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/719104 |
专题 | 工学院_系统设计与智能制造学院 |
作者单位 | 1.Shenzhen Key Laboratory of Control Theory and Intelligent Systems, Southern University of Science and Technology (SUSTech), Shenzhen, China 2.Australian Centre for Field Robotics, The University of Sydney, NSW, Australia 3.Australian Institute for Machine Learning, The University of Adelaide, SA, Australia 4.Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, China 5.Shenzhen Key Laboratory of Control Theory and Intelligent Systems, SUSTech, Shenzhen, China |
第一作者单位 | 系统设计与智能制造学院 |
通讯作者单位 | 系统设计与智能制造学院 |
第一作者的第一单位 | 系统设计与智能制造学院 |
推荐引用方式 GB/T 7714 |
Yu Liu,Yuexin Zhang,Kunming Li,et al. Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:4360-4366.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论