中文版 | English
题名

Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction

作者
通讯作者He Kong
DOI
发表日期
2023-09-24
会议名称
2023 IEEE 26th Int. Conf. on Intelligent Transportation Systems (ITSC)
ISSN
2153-0009
ISBN
979-8-3503-9947-9
会议录名称
页码
4360-4366
会议日期
24-28 Sept. 2023
会议地点
Bilbao, Spain
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Predicting pedestrian motion trajectories is crucial for path planning and motion control of autonomous vehicles. Accurately forecasting crowd trajectories is challenging due to the uncertain nature of human motions in different environments. For training, recent deep learning-based prediction approaches mainly utilize information like trajectory history and interactions between pedestrians, among others. This can limit the prediction performance across various scenarios since the discrepancies between training datasets have not been properly incorporated. To overcome this limitation, this paper proposes a graph transformer structure to improve prediction performance, capturing the differences between the various sites and scenarios contained in the datasets. In particular, a self-attention mechanism and a domain adaption module have been designed to improve the generalization ability of the model. Moreover, an additional metric considering cross-dataset sequences is introduced for training and performance evaluation purposes. The proposed framework is validated and compared against existing methods using popular public datasets, i.e., ETH and UCY. Experimental results demonstrate the improved performance of our proposed scheme.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Science, Technology, and Innovation Commission of Shenzhen Municipality, China[ZDSYS20220330161800001]
WOS研究方向
Automation & Control Systems ; Computer Science ; Transportation
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Transportation Science & Technology
WOS记录号
WOS:001178996704059
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10421989
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/719104
专题工学院_系统设计与智能制造学院
作者单位
1.Shenzhen Key Laboratory of Control Theory and Intelligent Systems, Southern University of Science and Technology (SUSTech), Shenzhen, China
2.Australian Centre for Field Robotics, The University of Sydney, NSW, Australia
3.Australian Institute for Machine Learning, The University of Adelaide, SA, Australia
4.Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, China
5.Shenzhen Key Laboratory of Control Theory and Intelligent Systems, SUSTech, Shenzhen, China
第一作者单位系统设计与智能制造学院
通讯作者单位系统设计与智能制造学院
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Yu Liu,Yuexin Zhang,Kunming Li,et al. Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:4360-4366.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yu Liu]的文章
[Yuexin Zhang]的文章
[Kunming Li]的文章
百度学术
百度学术中相似的文章
[Yu Liu]的文章
[Yuexin Zhang]的文章
[Kunming Li]的文章
必应学术
必应学术中相似的文章
[Yu Liu]的文章
[Yuexin Zhang]的文章
[Kunming Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。