题名 | PPG2BP: An End-to-End Cuffless Blood Pressure Estimation Model Using Single Channel Photoplethysmography |
作者 | |
DOI | |
发表日期 | 2023
|
ISSN | 2375-8341
|
ISBN | 979-8-3503-1673-5
|
会议录名称 | |
页码 | 1-6
|
会议日期 | 14-17 Nov. 2023
|
会议地点 | ZHENGZHOU, China
|
摘要 | Cardiovascular disease (CVD) is one of the leading causes of death globally, and regular blood pressure (BP) monitoring is essential to provide one of the most critical indicators of CVD prevention. Although current cuffless continuous BP measurement methods can achieve high accuracy, most require manual feature extraction influenced by prior knowledge and waveform quality. To address the above problems, this work proposes an end-to-end deep learning model, PPG2BP, which introduces the U-Net for image segmentation into one-dimensional BP estimation. PPG2BP utilizes a convolutional neural network to extract features adaptively and can perform BP estimation using only photoplethysmography (PPG) signals. In addition, PPG2BP includes an attention mechanism and a long short-term memory neural network in the decoder part of the U-Net. According to the British Hypertension Society standard, both diastolic blood pressure (DBP) and systolic blood pressure (SBP) estimation of PPG2BP reaches Grade A. PPG2BP also meets the standard of the Association for the Advancement of Medical Instrumentation in DBP estimation. The mean absolute error of SBP and DBP estimation are 4.62 mmHg and 2.74 mmHg, respectively. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10400380 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/719106 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, Shenzhen, China 2.Shenzhen University, Shenzhen, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yuting Ding,Changsheng Chen,Fei Chen. PPG2BP: An End-to-End Cuffless Blood Pressure Estimation Model Using Single Channel Photoplethysmography[C],2023:1-6.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论