中文版 | English
题名

Optimization and Improvement of Fake News Detection using Voting Technique for Societal Benefit

作者
DOI
发表日期
2023
会议名称
2023 IEEE International Conference on Data Mining Workshops (ICDMW)
ISSN
2375-9232
ISBN
979-8-3503-8165-8
会议录名称
页码
1565-1574
会议日期
4-4 Dec. 2023
会议地点
Shanghai, China
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
Addressing the surge in false information and the spread of fake news on the Internet has become increasingly challenging for fact-checkers to keep up with. Consequently, the exponential growth of fake news poses a serious threat, as it has been extensively exploited to manipulate public opinion and undermine trust in reliable sources. Machine learning classifiers have been employed in previous studies to address this issue. Existing work in text classification often overlooks the incorporation of contextual information, a gap that our proposed methodology seeks to fill. Our approach distinguishes itself by employing sophisticated text preprocessing techniques to capture subtle linguistic features, thereby enhancing the overall understanding of the text. Furthermore, we draw inspiration from ensemble machine learning strategies to bolster our methodology. We adopt a voting system, wherein the most frequently predicted class by five distinct classifiers is chosen. This ensemble method helps us address the inherent limitations of individual classifiers and improve the robustness of our results. In this study, we present a comparative analysis of five individual classifiers (Logistic Regression, Decision Trees, Naive Bayes, eXtreme Gradient Boosting, and Stochastic Gradient Descent) along with their combination using our ensemble voting technique. We conduct experiments on three real-world datasets of varying sizes and contexts for evaluation. Our findings reveal the increased performance of voting techniques in distinguishing between real and fake news, providing valuable insights into their efficacy in diverse contexts when compared to individual classifiers.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号
WOS:001164077500190
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10411657
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/719107
专题南方科技大学
作者单位
1.Florida International University, Florida, U.S.A.
2.Michigan Technological University, Michigan, U.S.A.
3.Boston University, Massachusetts, U.S.A.
4.University of Baltimore, Maryland, U.S.A.
5.Carnegie Mellon University, Pennsylvania, U.S.A.
6.Southern University of Science and Technology, Guangdong, China
7.Huazhong University of Science and Technology, Hubei, China
推荐引用方式
GB/T 7714
Sribala Vidyadhari Chinta,Karen Fernandes,Ningxi Cheng,et al. Optimization and Improvement of Fake News Detection using Voting Technique for Societal Benefit[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:1565-1574.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Optimization_and_Imp(927KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sribala Vidyadhari Chinta]的文章
[Karen Fernandes]的文章
[Ningxi Cheng]的文章
百度学术
百度学术中相似的文章
[Sribala Vidyadhari Chinta]的文章
[Karen Fernandes]的文章
[Ningxi Cheng]的文章
必应学术
必应学术中相似的文章
[Sribala Vidyadhari Chinta]的文章
[Karen Fernandes]的文章
[Ningxi Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。