(1) Sengupta, S.; Chattopadhyay, M.; Grossart, H.-P. The Multifaceted Roles of Antibiotics and Antibiotic Resistance in Nature. Frontiers in Microbiology 2013, 4.
(2) Sarmah, A. K.; Meyer, M. T.; Boxall, A. B. A. A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment. Chemosphere 2006, 65 (5), 725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026.
(3) Gross, M. Antibiotics in Crisis. Current Biology 2013, 23 (24), R1063–R1065. https://doi.org/10.1016/j.cub.2013.11.057.
(4) Wright, G. D. The Antibiotic Resistome: The Nexus of Chemical and Genetic Diversity. Nat Rev Microbiol 2007, 5 (3), 175–186. https://doi.org/10.1038/nrmicro1614.
(5) Wichmann, F.; Udikovic-Kolic, N.; Andrew, S.; Handelsman, J. Diverse Antibiotic Resistance Genes in Dairy Cow Manure. mBio 5 (2), e01017-13. https://doi.org/10.1128/mBio.01017-13.
(6) Zhu, Y.-G.; Johnson, T. A.; Su, J.-Q.; Qiao, M.; Guo, G.-X.; Stedtfeld, R. D.; Hashsham, S. A.; Tiedje, J. M. Diverse and Abundant Antibiotic Resistance Genes in Chinese Swine Farms. Proceedings of the National Academy of Sciences 2013, 110 (9), 3435–3440. https://doi.org/10.1073/pnas.1222743110.
(7) Baker, S.; Thomson, N.; Weill, F.-X.; Holt, K. E. Genomic Insights into the Emergence and Spread of Antimicrobial-Resistant Bacterial Pathogens. Science 2018, 360 (6390), 733–738. https://doi.org/10.1126/science.aar3777.
(8) Wang, F.; Xu, M.; Stedtfeld, R. D.; Sheng, H.; Fan, J.; Liu, M.; Chai, B.; Soares de Carvalho, T.; Li, H.; Li, Z.; Hashsham, S. A.; Tiedje, J. M. Long-Term Effect of Different Fertilization and Cropping Systems on the Soil Antibiotic Resistome. Environ. Sci. Technol. 2018. https://doi.org/10.1021/acs.est.8b04330.
(9) Allen, H. K.; Donato, J.; Wang, H. H.; Cloud-Hansen, K. A.; Davies, J.; Handelsman, J. Call of the Wild: Antibiotic Resistance Genes in Natural Environments. Nature Reviews Microbiology 2010, 8 (4), 251–259. https://doi.org/10.1038/nrmicro2312.
(10) D’Costa, V. M.; King, C. E.; Kalan, L.; Morar, M.; Sung, W. W. L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; Golding, G. B.; Poinar, H. N.; Wright, G. D. Antibiotic Resistance Is Ancient. Nature 2011, 477 (7365), 457–461. https://doi.org/10.1038/nature10388.
(11) Jansson, J. K.; Taş, N. The Microbial Ecology of Permafrost. Nature Reviews Microbiology 2014, 12 (6), 414–425. https://doi.org/10.1038/nrmicro3262.
(12) Johnson, S. S.; Zaikova, E.; Goerlitz, D. S.; Bai, Y.; Tighe, S. W. Real-Time DNA Sequencing in the Antarctic Dry Valleys Using the Oxford Nanopore Sequencer. J Biomol Tech 2017, 28 (1), 2–7. https://doi.org/10.7171/jbt.17-2801-009.
(13) Amos, G. C. A.; Ploumakis, S.; Zhang, L.; Hawkey, P. M.; Gaze, W. H.; Wellington, E. M. H. The Widespread Dissemination of Integrons throughout Bacterial Communities in a Riverine System. The ISME Journal 2018, 12 (3), 681–691. https://doi.org/10.1038/s41396-017-0030-8.
(14) Hatosy, S. M.; Martiny, A. C. The Ocean as a Global Reservoir of Antibiotic Resistance Genes. Appl. Environ. Microbiol. 2015, AEM.00736-15. https://doi.org/10.1128/AEM.00736-15.
(15) Bennett, P. M. Plasmid Encoded Antibiotic Resistance: Acquisition and Transfer of Antibiotic Resistance Genes in Bacteria. British Journal of Pharmacology 2008, 153 (S1), S347–S357. https://doi.org/10.1038/sj.bjp.0707607.
(16) Yao, Y.; Maddamsetti, R.; Weiss, A.; Ha, Y.; Wang, T.; Wang, S.; You, L. Intra- and Interpopulation Transposition of Mobile Genetic Elements Driven by Antibiotic Selection. Nat Ecol Evol 2022, 1–10. https://doi.org/10.1038/s41559-022-01705-2.
(17) Arnold, B. J.; Huang, I.-T.; Hanage, W. P. Horizontal Gene Transfer and Adaptive Evolution in Bacteria. Nat Rev Microbiol 2021, 1–13. https://doi.org/10.1038/s41579-021-00650-4.
(18) Qin, Y.; Guo, Z.; Huang, H.; Zhu, L.; Dong, S.; Zhu, Y.-G.; Cui, L.; Huang, Q. Widespread of Potential Pathogen-Derived Extracellular Vesicles Carrying Antibiotic Resistance Genes in Indoor Dust. Environ. Sci. Technol. 2022. https://doi.org/10.1021/acs.est.1c08654.
(19) Bourgeois, J. S.; Smith, C. M.; Ko, D. C. These Are the Genes You’re Looking For: Finding Host Resistance Genes. Trends in Microbiology 2021, 29 (4), 346–362. https://doi.org/10.1016/j.tim.2020.09.006.
(20) Oliveira, P. H.; Touchon, M.; Cury, J.; Rocha, E. P. C. The Chromosomal Organization of Horizontal Gene Transfer in Bacteria. Nat Commun 2017, 8 (1), 841. https://doi.org/10.1038/s41467-017-00808-w.(21) Lopatkin, A. J.; Meredith, H. R.; Srimani, J. K.; Pfeiffer, C.; Durrett, R.; You, L. Persistence and Reversal of Plasmid-Mediated Antibiotic Resistance. Nat Commun 2017, 8 (1), 1689. https://doi.org/10.1038/s41467-017-01532-1.(22) Lewis, K. Platforms for Antibiotic Discovery. Nat Rev Drug Discov 2013, 12 (5), 371–387. https://doi.org/10.1038/nrd3975.(23) Kwak, Y.-K.; Colque, P.; Byfors, S.; Giske, C. G.; Möllby, R.; Kühn, I. Surveillance of Antimicrobial Resistance among Escherichia Coli in Wastewater in Stockholm during 1 Year: Does It Reflect the Resistance Trends in the Society? International Journal of Antimicrobial Agents 2015, 45 (1), 25–32. https://doi.org/10.1016/j.ijantimicag.2014.09.016.(24) Huijbers, P. M. C.; Larsson, D. G. J.; Flach, C.-F. Surveillance of Antibiotic Resistant Escherichia Coli in Human Populations through Urban Wastewater in Ten European Countries. Environmental Pollution 2020, 261, 114200. https://doi.org/10.1016/j.envpol.2020.114200.(25) Pärnänen, K. M. M.; Narciso-da-Rocha, C.; Kneis, D.; Berendonk, T. U.; Cacace, D.; Do, T. T.; Elpers, C.; Fatta-Kassinos, D.; Henriques, I.; Jaeger, T.; Karkman, A.; Martinez, J. L.; Michael, S. G.; Michael-Kordatou, I.; O’Sullivan, K.; Rodriguez-Mozaz, S.; Schwartz, T.; Sheng, H.; Sørum, H.; Stedtfeld, R. D.; Tiedje, J. M.; Giustina, S. V. D.; Walsh, F.; Vaz-Moreira, I.; Virta, M.; Manaia, C. M. Antibiotic Resistance in European Wastewater Treatment Plants Mirrors the Pattern of Clinical Antibiotic Resistance Prevalence. Science Advances 2019, 5 (3), eaau9124. https://doi.org/10.1126/sciadv.aau9124.(26) Aminov, R. I.; Mackie, R. I. Evolution and Ecology of Antibiotic Resistance Genes. FEMS Microbiology Letters 2007, 271 (2), 147–161. https://doi.org/10.1111/j.1574-6968.2007.00757.x.(27) Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V. Molecular Mechanisms of Antibiotic Resistance. Nature Reviews Microbiology 2015, 13 (1), 42–51. https://doi.org/10.1038/nrmicro3380.(28) Liu, G.; Ling, B.-D.; Zeng, Y.; Lin, L.; Xie, Y.-E.; Lei, J. Molecular Characterization of Extended-Spectrum Beta-Lactamases Produced by Clinical Isolates of Enterobacter Cloacae from a Teaching Hospital in China. Jpn. J. Infect. Dis. 2008, 61 (4), 286–289.(29) Paiva, M. C.; Reis, M. P.; Costa, P. S.; Dias, M. F.; Bleicher, L.; Scholte, L. L. S.; Nardi, R. M. D.; Nascimento, A. M. A. Identification of New Bacteria Harboring QnrS and Aac(6′)-Ib/Cr and Mutations Possibly Involved in Fluoroquinolone Resistance in Raw Sewage and Activated Sludge Samples from a Full-Scale WWTP. Water Research 2017, 110, 27–37. https://doi.org/10.1016/j.watres.2016.11.056.(30) Darby, E. M.; Trampari, E.; Siasat, P.; Gaya, M. S.; Alav, I.; Webber, M. A.; Blair, J. M. A. Molecular Mechanisms of Antibiotic Resistance Revisited. Nat Rev Microbiol 2022, 1–16. https://doi.org/10.1038/s41579-022-00820-y.(31) Perry, J. A.; Westman, E. L.; Wright, G. D. The Antibiotic Resistome: What’s New? Current Opinion in Microbiology 2014, 21, 45–50. https://doi.org/10.1016/j.mib.2014.09.002.(32) Dantas, G.; Sommer, M. O. Context Matters — the Complex Interplay between Resistome Genotypes and Resistance Phenotypes. Current Opinion in Microbiology 2012, 15 (5), 577–582. https://doi.org/10.1016/j.mib.2012.07.004.(33) D’Costa, V. M.; Griffiths, E.; Wright, G. D. Expanding the Soil Antibiotic Resistome: Exploring Environmental Diversity. Current Opinion in Microbiology 2007, 10 (5), 481–489. https://doi.org/10.1016/j.mib.2007.08.009.(34) Finley, R. L.; Collignon, P.; Larsson, D. G. J.; McEwen, S. A.; Li, X.-Z.; Gaze, W. H.; Reid-Smith, R.; Timinouni, M.; Graham, D. W.; Topp, E. The Scourge of Antibiotic Resistance: The Important Role of the Environment. Clinical Infectious Diseases 2013, 57 (5), 704–710. https://doi.org/10.1093/cid/cit355.(35) Pawlowski, A. C.; Wang, W.; Koteva, K.; Barton, H. A.; McArthur, A. G.; Wright, G. D. A Diverse Intrinsic Antibiotic Resistome from a Cave Bacterium. Nat Commun 2016, 7 (1), 13803. https://doi.org/10.1038/ncomms13803.(36) Forsberg, K. J.; Reyes, A.; Wang, B.; Selleck, E. M.; Sommer, M. O. A.; Dantas, G. The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. Science 2012, 337 (6098), 1107–1111. https://doi.org/10.1126/science.1220761.(37) Perry, J. A.; Wright, G. D. Forces Shaping the Antibiotic Resistome. BioEssays 2014, 36 (12), 1179–1184. https://doi.org/10.1002/bies.201400128.(38) Perry, J.; Wright, G. The Antibiotic Resistance “Mobilome”: Searching for the Link between Environment and Clinic. Frontiers in Microbiology 2013, 4.(39) Kim, D.-W.; Cha, C.-J. Antibiotic Resistome from the One-Health Perspective: Understanding and Controlling Antimicrobial Resistance Transmission. Exp Mol Med 2021, 53 (3), 301–309. https://doi.org/10.1038/s12276-021-00569-z.(40) Reller, L. B.; Weinstein, M.; Jorgensen, J. H.; Ferraro, M. J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clinical Infectious Diseases 2009, 49 (11), 1749–1755. https://doi.org/10.1086/647952.(41) Matuschek, E.; Brown, D. F. J.; Kahlmeter, G. Development of the EUCAST Disk Diffusion Antimicrobial Susceptibility Testing Method and Its Implementation in Routine Microbiology Laboratories. Clinical Microbiology and Infection 2014, 20 (4), O255–O266. https://doi.org/10.1111/1469-0691.12373.(42) Baker, C. N.; Stocker, S. A.; Culver, D. H.; Thornsberry, C. Comparison of the E Test to Agar Dilution, Broth Microdilution, and Agar Diffusion Susceptibility Testing Techniques by Using a Special Challenge Set of Bacteria. Journal of Clinical Microbiology 1991, 29 (3), 533–538. https://doi.org/10.1128/jcm.29.3.533-538.1991.(43) Leff, L. G.; Fasina, K.; Engohang-Ndong, J. Detecting Antibiotic Resistance Genes in Anthropogenically Impacted Streams and Rivers. Current Opinion in Biotechnology 2023, 79, 102878. https://doi.org/10.1016/j.copbio.2022.102878.(44) Waseem, H.; Jameel, S.; Ali, J.; Saleem Ur Rehman, H.; Tauseef, I.; Farooq, U.; Jamal, A.; Ali, M. I. Contributions and Challenges of High Throughput QPCR for Determining Antimicrobial Resistance in the Environment: A Critical Review. Molecules 2019, 24 (1), 163. https://doi.org/10.3390/molecules24010163.(45) Doyle, R. M.; Burgess, C.; Williams, R.; Gorton, R.; Booth, H.; Brown, J.; Bryant, J. M.; Chan, J.; Creer, D.; Holdstock, J.; Kunst, H.; Lozewicz, S.; Platt, G.; Romero, E. Y.; Speight, G.; Tiberi, S.; Abubakar, I.; Lipman, M.; McHugh, T. D.; Breuer, J. Direct Whole-Genome Sequencing of Sputum Accurately Identifies Drug-Resistant Mycobacterium Tuberculosis Faster than MGIT Culture Sequencing. J. Clin. Microbiol. 2018, 56 (8), e00666-18. https://doi.org/10.1128/JCM.00666-18.(46) Cao, J.; Hu, Y.; Liu, F.; Wang, Y.; Bi, Y.; Lv, N.; Li, J.; Zhu, B.; Gao, G. F. Metagenomic Analysis Reveals the Microbiome and Resistome in Migratory Birds. Microbiome 2020, 8 (1), 26. https://doi.org/10.1186/s40168-019-0781-8.(47) Muntean, M. M.; Muntean, A.-A.; Preda, M.; Manolescu, L. S. C.; Dragomirescu, C.; Popa, M.-I.; Popa, G. L. Phenotypic and Genotypic Detection Methods for Antimicrobial Resistance in ESKAPE Pathogens (Review). Exp Ther Med 2022, 24 (2), 508. https://doi.org/10.3892/etm.2022.11435.(48) Torsvik, V.; Øvreås, L.; Thingstad, T. F. Prokaryotic Diversity--Magnitude, Dynamics, and Controlling Factors. Science 2002, 296 (5570), 1064–1066. https://doi.org/10.1126/science.1071698.(49) Thompson, L. R.; Sanders, J. G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K. J.; Prill, R. J.; Tripathi, A.; Gibbons, S. M.; Ackermann, G.; Navas-Molina, J. A.; Janssen, S.; Kopylova, E.; Vázquez-Baeza, Y.; González, A.; Morton, J. T.; Mirarab, S.; Zech Xu, Z.; Jiang, L.; Haroon, M. F.; Kanbar, J.; Zhu, Q.; Jin Song, S.; Kosciolek, T.; Bokulich, N. A.; Lefler, J.; Brislawn, C. J.; Humphrey, G.; Owens, S. M.; Hampton-Marcell, J.; Berg-Lyons, D.; McKenzie, V.; Fierer, N.; Fuhrman, J. A.; Clauset, A.; Stevens, R. L.; Shade, A.; Pollard, K. S.; Goodwin, K. D.; Jansson, J. K.; Gilbert, J. A.; Knight, R. A Communal Catalogue Reveals Earth’s Multiscale Microbial Diversity. Nature 2017, 551 (7681), 457–463. https://doi.org/10.1038/nature24621.(50) Ofiţeru, I. D.; Lunn, M.; Curtis, T. P.; Wells, G. F.; Criddle, C. S.; Francis, C. A.; Sloan, W. T. Combined Niche and Neutral Effects in a Microbial Wastewater Treatment Community. Proceedings of the National Academy of Sciences 2010, 107 (35), 15345–15350. https://doi.org/10.1073/pnas.1000604107.(51) Mateo-Sagasta, J.; Raschid-Sally, L.; Thebo, A. Global Wastewater and Sludge Production, Treatment and Use. In Wastewater: Economic Asset in an Urbanizing World; Drechsel, P., Qadir, M., Wichelns, D., Eds.; Springer Netherlands: Dordrecht, 2015; pp 15–38. https://doi.org/10.1007/978-94-017-9545-6_2.(52) Encyclopedia of Climate and Weather; Oxford University Press, 2011.(53) van Loosdrecht, M. C. M.; Brdjanovic, D. Anticipating the next Century of Wastewater Treatment. Science 2014, 344 (6191), 1452–1453. https://doi.org/10.1126/science.1255183.(54) Aristi, I.; Schiller, D. von; Arroita, M.; Barceló, D.; Ponsatí, L.; García‐Galán, M. J.; Sabater, S.; Elosegi, A.; Acuña, V. Mixed Effects of Effluents from a Wastewater Treatment Plant on River Ecosystem Metabolism: Subsidy or Stress? Freshwater Biology 2015, 60 (7), 1398–1410. https://doi.org/10.1111/fwb.12576.(55) Brienza, M.; Sauvêtre, A.; Ait-Mouheb, N.; Bru-Adan, V.; Coviello, D.; Lequette, K.; Patureau, D.; Chiron, S.; Wéry, N. Reclaimed Wastewater Reuse in Irrigation: Role of Biofilms in the Fate of Antibiotics and Spread of Antimicrobial Resistance. Water Research 2022, 221, 118830. https://doi.org/10.1016/j.watres.2022.118830.(56) Pei, R.; Cha, J.; Carlson, K. H.; Pruden, A. Response of Antibiotic Resistance Genes (ARG) to Biological Treatment in Dairy Lagoon Water. Environmental Science & Technology 2007, 41 (14), 5108–5113. https://doi.org/10.1021/es070051x.(57) Amos, G. C. A.; Hawkey, P. M.; Gaze, W. H.; Wellington, E. M. Waste Water Effluent Contributes to the Dissemination of CTX-M-15 in the Natural Environment. Journal of Antimicrobial Chemotherapy 2014, 69 (7), 1785–1791. https://doi.org/10.1093/jac/dku079.(58) González-Plaza, J. J.; Šimatović, A.; Milaković, M.; Bielen, A.; Wichmann, F.; Udiković-Kolić, N. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments. Front. Microbiol. 2018, 8. https://doi.org/10.3389/fmicb.2017.02675.(59) Cai, L.; Ju, F.; Zhang, T. Tracking Human Sewage Microbiome in a Municipal Wastewater Treatment Plant. Appl Microbiol Biotechnol 2014, 98 (7), 3317–3326. https://doi.org/10.1007/s00253-013-5402-z.(60) Newton, R. J.; McLellan, S. L.; Dila, D. K.; Vineis, J. H.; Morrison, H. G.; Eren, A. M.; Sogin, M. L. Sewage Reflects the Microbiomes of Human Populations. mBio 2015, 6 (2), e02574-14. https://doi.org/10.1128/mBio.02574-14.(61) Aarestrup, F. M.; Woolhouse, M. E. J. Using Sewage for Surveillance of Antimicrobial Resistance. Science 2020, 367 (6478), 630–632. https://doi.org/10.1126/science.aba3432.(62) Berglund, F.; Ebmeyer, S.; Kristiansson, E.; Larsson, D. G. J. Evidence for Wastewaters as Environments Where Mobile Antibiotic Resistance Genes Emerge. Commun Biol 2023, 6 (1), 1–11. https://doi.org/10.1038/s42003-023-04676-7.(63) Munk, P.; Brinch, C.; Møller, F. D.; Petersen, T. N.; Hendriksen, R. S.; Seyfarth, A. M.; Kjeldgaard, J. S.; Svendsen, C. A.; van Bunnik, B.; Berglund, F.; Larsson, D. G. J.; Koopmans, M.; Woolhouse, M.; Aarestrup, F. M. Genomic Analysis of Sewage from 101 Countries Reveals Global Landscape of Antimicrobial Resistance. Nat Commun 2022, 13 (1), 7251. https://doi.org/10.1038/s41467-022-34312-7.(64) Hutinel, M.; Huijbers, P. M. C.; Fick, J.; Åhrén, C.; Larsson, D. G. J.; Flach, C.-F. Population-Level Surveillance of Antibiotic Resistance in Escherichia Coli through Sewage Analysis. Euro Surveill 2019, 24 (37). https://doi.org/10.2807/1560-7917.es.2019.24.37.1800497.(65) Hendriksen, R. S.; Munk, P.; Njage, P.; van Bunnik, B.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Pedersen, S. K.; Kjeldgaard, J.; Kaas, R. S.; Clausen, P. T. L. C.; Vogt, J. K.; Leekitcharoenphon, P.; van de Schans, M. G. M.; Zuidema, T.; de Roda Husman, A. M.; Rasmussen, S.; Petersen, B.; Amid, C.; Cochrane, G.; Sicheritz-Ponten, T.; Schmitt, H.; Alvarez, J. R. M.; Aidara-Kane, A.; Pamp, S. J.; Lund, O.; Hald, T.; Woolhouse, M.; Koopmans, M. P.; Vigre, H.; Petersen, T. N.; Aarestrup, F. M. Global Monitoring of Antimicrobial Resistance Based on Metagenomics Analyses of Urban Sewage. Nat Commun 2019, 10 (1), 1124. https://doi.org/10.1038/s41467-019-08853-3.(66) Wei, Z.; Feng, K.; Wang, Z.; Zhang, Y.; Yang, M.; Zhu, Y.-G.; Virta, M. P. J.; Deng, Y. High-Throughput Single-Cell Technology Reveals the Contribution of Horizontal Gene Transfer to Typical Antibiotic Resistance Gene Dissemination in Wastewater Treatment Plants. Environ. Sci. Technol. 2021. https://doi.org/10.1021/acs.est.1c01250.(67) Raymond, F.; Boissinot, M.; Ouameur, A. A.; Déraspe, M.; Plante, P.-L.; Kpanou, S. R.; Bérubé, È.; Huletsky, A.; Roy, P. H.; Ouellette, M.; Bergeron, M. G.; Corbeil, J. Culture-Enriched Human Gut Microbiomes Reveal Core and Accessory Resistance Genes. Microbiome 2019, 7 (1), 56. https://doi.org/10.1186/s40168-019-0669-7.(68) Guo, J.; Li, J.; Chen, H.; Bond, P. L.; Yuan, Z. Metagenomic Analysis Reveals Wastewater Treatment Plants as Hotspots of Antibiotic Resistance Genes and Mobile Genetic Elements. Water Research 2017, 123, 468–478. https://doi.org/10.1016/j.watres.2017.07.002.(69) Wei, Z.; Feng, K.; Li, S.; Zhang, Y.; Chen, H.; Yin, H.; Xu, M.; Deng, Y. Exploring Abundance, Diversity and Variation of a Widespread Antibiotic Resistance Gene in Wastewater Treatment Plants. Environment International 2018, 117, 186–195. https://doi.org/10.1016/j.envint.2018.05.009.(70) Bonomo, R. A.; Szabo, D. Mechanisms of Multidrug Resistance in Acinetobacter Species and Pseudomonas Aeruginosa. Clinical Infectious Diseases 2006, 43 (Supplement_2), S49–S56. https://doi.org/10.1086/504477.(71) Kaskhedikar, M.; Chhabra, D. Multiple Drug Resistance in Aeromonas Hydrophila Isolates of Fish. Veterinary World 2010.(72) Anjum, M.; Madsen, J. S.; Nesme, J.; Jana, B.; Wiese, M.; Jasinskytė, D.; Nielsen, D. S.; Sørensen, S. J.; Dalsgaard, A.; Moodley, A.; Bortolaia, V.; Guardabassi, L. Fate of CMY-2-Encoding Plasmids Introduced into the Human Fecal Microbiota by Exogenous Escherichia Coli. Antimicrobial Agents and Chemotherapy 2019, 63 (5), e02528-18. https://doi.org/10.1128/AAC.02528-18.(73) Zarei-Baygi, A.; Harb, M.; Wang, P.; Stadler, L. B.; Smith, A. L. Evaluating Antibiotic Resistance Gene Correlations with Antibiotic Exposure Conditions in Anaerobic Membrane Bioreactors. Environ. Sci. Technol. 2019, 53 (7), 3599–3609. https://doi.org/10.1021/acs.est.9b00798.(74) Karkman, A.; Do, T. T.; Walsh, F.; Virta, M. P. J. Antibiotic-Resistance Genes in Waste Water. Trends in Microbiology 2018, 26 (3), 220–228. https://doi.org/10.1016/j.tim.2017.09.005.(75) Ju, F.; Beck, K.; Yin, X.; Maccagnan, A.; McArdell, C. S.; Singer, H. P.; Johnson, D. R.; Zhang, T.; Bürgmann, H. Wastewater Treatment Plant Resistomes Are Shaped by Bacterial Composition, Genetic Exchange, and Upregulated Expression in the Effluent Microbiomes. The ISME Journal 2018. https://doi.org/10.1038/s41396-018-0277-8.(76) Ma, L.; Li, A.-D.; Yin, X.-L.; Zhang, T. The Prevalence of Integrons as the Carrier of Antibiotic Resistance Genes in Natural and Man-Made Environments. Environ. Sci. Technol. 2017, 51 (10), 5721–5728. https://doi.org/10.1021/acs.est.6b05887.(77) Yang, Y.; Li, B.; Zou, S.; Fang, H. H. P.; Zhang, T. Fate of Antibiotic Resistance Genes in Sewage Treatment Plant Revealed by Metagenomic Approach. Water Research 2014, 62, 97–106. https://doi.org/10.1016/j.watres.2014.05.019.(78) Michael, I.; Rizzo, L.; McArdell, C. S.; Manaia, C. M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban Wastewater Treatment Plants as Hotspots for the Release of Antibiotics in the Environment: A Review. Water Research 2013, 47 (3), 957–995. https://doi.org/10.1016/j.watres.2012.11.027.(79) Zhang, Y.; Liu, C.; Chen, H.; Chen, J.; Li, J.; Teng, Y. Metagenomic Insights into Resistome Coalescence in an Urban Sewage Treatment Plant-River System. Water Research 2022, 224, 119061. https://doi.org/10.1016/j.watres.2022.119061.(80) Cacace, D.; Fatta-Kassinos, D.; Manaia, C. M.; Cytryn, E.; Kreuzinger, N.; Rizzo, L.; Karaolia, P.; Schwartz, T.; Alexander, J.; Merlin, C.; Garelick, H.; Schmitt, H.; de Vries, D.; Schwermer, C. U.; Meric, S.; Ozkal, C. B.; Pons, M.-N.; Kneis, D.; Berendonk, T. U. Antibiotic Resistance Genes in Treated Wastewater and in the Receiving Water Bodies: A Pan-European Survey of Urban Settings. Water Research 2019, 162, 320–330. https://doi.org/10.1016/j.watres.2019.06.039.(81) Mao, D.; Yu, S.; Rysz, M.; Luo, Y.; Yang, F.; Li, F.; Hou, J.; Mu, Q.; Alvarez, P. J. J. Prevalence and Proliferation of Antibiotic Resistance Genes in Two Municipal Wastewater Treatment Plants. Water Research 2015, 85, 458–466. https://doi.org/10.1016/j.watres.2015.09.010.(82) Osińska, A.; Korzeniewska, E.; Harnisz, M.; Felis, E.; Bajkacz, S.; Jachimowicz, P.; Niestępski, S.; Konopka, I. Small-Scale Wastewater Treatment Plants as a Source of the Dissemination of Antibiotic Resistance Genes in the Aquatic Environment. Journal of Hazardous Materials 2020, 381, 121221. https://doi.org/10.1016/j.jhazmat.2019.121221.(83) Laht, M.; Karkman, A.; Voolaid, V.; Ritz, C.; Tenson, T.; Virta, M.; Kisand, V. Abundances of Tetracycline, Sulphonamide and Beta-Lactam Antibiotic Resistance Genes in Conventional Wastewater Treatment Plants (WWTPs) with Different Waste Load. PLOS ONE 2014, 9 (8), e103705. https://doi.org/10.1371/journal.pone.0103705.(84) Bengtsson-Palme, J.; Hammarén, R.; Pal, C.; Östman, M.; Björlenius, B.; Flach, C.-F.; Fick, J.; Kristiansson, E.; Tysklind, M.; Larsson, D. G. J. Elucidating Selection Processes for Antibiotic Resistance in Sewage Treatment Plants Using Metagenomics. Science of The Total Environment 2016, 572, 697–712. https://doi.org/10.1016/j.scitotenv.2016.06.228.(85) Karkman, A.; Johnson, T. A.; Lyra, C.; Stedtfeld, R. D.; Tamminen, M.; Tiedje, J. M.; Virta, M. High-Throughput Quantification of Antibiotic Resistance Genes from an Urban Wastewater Treatment Plant. FEMS Microbiol Ecol 2016, 92 (3). https://doi.org/10.1093/femsec/fiw014.(86) Harris, S.; Cormican, M.; Cummins, E. The Effect of Conventional Wastewater Treatment on the Levels of Antimicrobial-Resistant Bacteria in Effluent: A Meta-Analysis of Current Studies. Environ Geochem Health 2012, 34 (6), 749–762. https://doi.org/10.1007/s10653-012-9493-8.(87) Quintela-Baluja, M.; Abouelnaga, M.; Romalde, J.; Su, J.-Q.; Yu, Y.; Gomez-Lopez, M.; Smets, B.; Zhu, Y.-G.; Graham, D. W. Spatial Ecology of a Wastewater Network Defines the Antibiotic Resistance Genes in Downstream Receiving Waters. Water Research 2019, 162, 347–357. https://doi.org/10.1016/j.watres.2019.06.075.(88) Zhang, Y.; Li, A.; Dai, T.; Li, F.; Xie, H.; Chen, L.; Wen, D. Cell-Free DNA: A Neglected Source for Antibiotic Resistance Genes Spreading from WWTPs. Environ. Sci. Technol. 2018, 52 (1), 248–257. https://doi.org/10.1021/acs.est.7b04283.(89) Beaber, J. W.; Hochhut, B.; Waldor, M. K. SOS Response Promotes Horizontal Dissemination of Antibiotic Resistance Genes. Nature 2004, 427 (6969), 72–74. https://doi.org/10.1038/nature02241.(90) Griffith, F. The Significance of Pneumococcal Types. J Hyg (Lond) 1928, 27 (2), 113–159. https://doi.org/10.1017/s0022172400031879.(91) Hayes, F. The Horizontal Gene Pool — Bacterial Plasmids and Gene Spread. Heredity 2001, 86 (2), 251–252. https://doi.org/10.1046/j.1365-2540.2001.0902b.x.(92) Jain, R.; Rivera, M. C.; Lake, J. A. Horizontal Gene Transfer among Genomes: The Complexity Hypothesis. Proceedings of the National Academy of Sciences 1999, 96 (7), 3801–3806. https://doi.org/10.1073/pnas.96.7.3801.(93) Arnold, B. J.; Huang, I.-T.; Hanage, W. P. Horizontal Gene Transfer and Adaptive Evolution in Bacteria. Nat Rev Microbiol 2022, 20 (4), 206–218. https://doi.org/10.1038/s41579-021-00650-4.(94) Lederberg, J.; Tatum, E. L. Gene Recombination in Escherichia Coli. Nature 1946, 158 (4016), 558–558. https://doi.org/10.1038/158558a0.(95) Norman, A.; Hansen, L. H.; Sørensen, S. J. Conjugative Plasmids: Vessels of the Communal Gene Pool. Philosophical Transactions of the Royal Society B: Biological Sciences 2009, 364 (1527), 2275–2289. https://doi.org/10.1098/rstb.2009.0037.(96) Zatyka, M.; Thomas, C. M. Control of Genes for Conjugative Transfer of Plasmids and Other Mobile Elements. FEMS Microbiol Rev 1998, 21 (4), 291–319. https://doi.org/10.1111/j.1574-6976.1998.tb00355.x.(97) Cascales, E.; Christie, P. J. The Versatile Bacterial Type IV Secretion Systems. Nat Rev Microbiol 2003, 1 (2), 137–149. https://doi.org/10.1038/nrmicro753.(98) Harrison, E.; Brockhurst, M. A. Plasmid-Mediated Horizontal Gene Transfer Is a Coevolutionary Process. Trends in Microbiology 2012, 20 (6), 262–267. https://doi.org/10.1016/j.tim.2012.04.003.(99) Rendueles, O.; Sousa, J. A. M. de; Bernheim, A.; Touchon, M.; Rocha, E. P. C. Genetic Exchanges Are More Frequent in Bacteria Encoding Capsules. PLOS Genetics 2018, 14 (12), e1007862. https://doi.org/10.1371/journal.pgen.1007862.(100) Paget, E.; Simonet, P. On the Track of Natural Transformation in Soil. FEMS Microbiology Ecology 1994, 15 (1), 109–117.(101) Lorenz, M. G.; Wackernagel, W. Bacterial Gene Transfer by Natural Genetic Transformation in the Environment. Microbiological Reviews 1994, 58 (3), 563–602. https://doi.org/10.1128/mr.58.3.563-602.1994.(102) Brockhurst, M. A.; Harrison, E.; Hall, J. P. J.; Richards, T.; McNally, A.; MacLean, C. The Ecology and Evolution of Pangenomes. Current Biology 2019, 29 (20), R1094–R1103. https://doi.org/10.1016/j.cub.2019.08.012.(103) San Millan, A. Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends in Microbiology 2018, 26 (12), 978–985. https://doi.org/10.1016/j.tim.2018.06.007.(104) Brown, L.; Wolf, J. M.; Prados-Rosales, R.; Casadevall, A. Through the Wall: Extracellular Vesicles in Gram-Positive Bacteria, Mycobacteria and Fungi. Nat Rev Microbiol 2015, 13 (10), 620–630. https://doi.org/10.1038/nrmicro3480.(105) Deatherage, B. L.; Cookson, B. T. Membrane Vesicle Release in Bacteria, Eukaryotes, and Archaea: A Conserved yet Underappreciated Aspect of Microbial Life. Infection and Immunity 2012, 80 (6), 1948–1957. https://doi.org/10.1128/IAI.06014-11.(106) Soler, N.; Forterre, P. Vesiduction: The Fourth Way of HGT. Environmental Microbiology 2020, 22 (7), 2457–2460. https://doi.org/10.1111/1462-2920.15056.(107) Frost, L. S.; Leplae, R.; Summers, A. O.; Toussaint, A. Mobile Genetic Elements: The Agents of Open Source Evolution. Nat Rev Microbiol 2005, 3 (9), 722–732. https://doi.org/10.1038/nrmicro1235.(108) Harrison, P. W.; Lower, R. P. J.; Kim, N. K. D.; Young, J. P. W. Introducing the Bacterial ‘Chromid’: Not a Chromosome, Not a Plasmid. Trends in Microbiology 2010, 18 (4), 141–148. https://doi.org/10.1016/j.tim.2009.12.010.(109) Thomas, C. M.; Nielsen, K. M. Mechanisms of, and Barriers to, Horizontal Gene Transfer between Bacteria. Nat Rev Microbiol 2005, 3 (9), 711–721. https://doi.org/10.1038/nrmicro1234.(110) Sørensen, S. J.; Bailey, M.; Hansen, L. H.; Kroer, N.; Wuertz, S. Studying Plasmid Horizontal Transfer in Situ: A Critical Review. Nature Reviews Microbiology 2005, 3 (9), 700–710. https://doi.org/10.1038/nrmicro1232.(111) Petersen, J.; Frank, O.; Göker, M.; Pradella, S. Extrachromosomal, Extraordinary and Essential—the Plasmids of the Roseobacter Clade. Appl Microbiol Biotechnol 2013, 97 (7), 2805–2815. https://doi.org/10.1007/s00253-013-4746-8.(112) Petersen, J.; Vollmers, J.; Ringel, V.; Brinkmann, H.; Ellebrandt-Sperling, C.; Spröer, C.; Howat, A. M.; Murrell, J. C.; Kaster, A.-K. A Marine Plasmid Hitchhiking Vast Phylogenetic and Geographic Distances. Proceedings of the National Academy of Sciences 2019, 116 (41), 20568–20573. https://doi.org/10.1073/pnas.1905878116.(113) Pilla, G.; Tang, C. M. Going around in Circles: Virulence Plasmids in Enteric Pathogens. Nature Reviews Microbiology 2018, 16 (8), 484–495. https://doi.org/10.1038/s41579-018-0031-2.(114) Hawkey, J.; Cottingham, H.; Tokolyi, A.; Wick, R. R.; Judd, L. M.; Cerdeira, L.; de Oliveira Garcia, D.; Wyres, K. L.; Holt, K. E. Y. 2022. Linear Plasmids in Klebsiella and Other Enterobacteriaceae. Microbial Genomics 8 (4), 000807. https://doi.org/10.1099/mgen.0.000807.(115) Hinnebusch, J.; Tilly, K. Linear Plasmids and Chromosomes in Bacteria. Molecular Microbiology 1993, 10 (5), 917–922. https://doi.org/10.1111/j.1365-2958.1993.tb00963.x.(116) Stewart, P. E.; Byram, R.; Grimm, D.; Tilly, K.; Rosa, P. A. The Plasmids of Borrelia Burgdorferi: Essential Genetic Elements of a Pathogen. Plasmid 2005, 53 (1), 1–13. https://doi.org/10.1016/j.plasmid.2004.10.006.(117) Smillie, C.; Garcillán-Barcia, M. P.; Francia, M. V.; Rocha, E. P. C.; de la Cruz, F. Mobility of Plasmids. Microbiol Mol Biol Rev 2010, 74 (3), 434–452. https://doi.org/10.1128/MMBR.00020-10.(118) Cabello, F.; Timmis, K.; Cohen, S. N. Replication Control in a Composite Plasmid Constructed by in Vitro Linkage of Two Distinct Replicons. Nature 1976, 259 (5541), 285–290. https://doi.org/10.1038/259285a0.(119) Bayley, S. A.; Morris, D. W.; Broda, P. The Relationship of Degradative and Resistance Plasmids of Pseudomonas Belonging to the Same Incompatibility Group. Nature 1979, 280 (5720), 338–339. https://doi.org/10.1038/280338a0.(120) Velappan, N.; Sblattero, D.; Chasteen, L.; Pavlik, P.; Bradbury, A. R. M. Plasmid Incompatibility: More Compatible than Previously Thought? Protein Engineering, Design and Selection 2007, 20 (7), 309–313. https://doi.org/10.1093/protein/gzm005.(121) Rosen, J.; Ryder, T.; Ohtsubo, H.; Ohtsubo, E. Role of RNA Transcripts in Replication Incompatibility and Copy Number Control in Antibiotic Resistance Plasmid Derivatives. Nature 1981, 290 (5809), 794–797. https://doi.org/10.1038/290794a0.(122) Rozwandowicz, M.; Brouwer, M. S. M.; Fischer, J.; Wagenaar, J. A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D. J.; Hordijk, J. Plasmids Carrying Antimicrobial Resistance Genes in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy 2018, 73 (5), 1121–1137. https://doi.org/10.1093/jac/dkx488.(123) Hordijk, J.; Mevius, D. J.; Kant, A.; Bos, M. E. H.; Graveland, H.; Bosman, A. B.; Hartskeerl, C. M.; Heederik, D. J. J.; Wagenaar, J. A. Within-Farm Dynamics of ESBL/AmpC-Producing Escherichia Coli in Veal Calves: A Longitudinal Approach. Journal of Antimicrobial Chemotherapy 2013, 68 (11), 2468–2476. https://doi.org/10.1093/jac/dkt219.(124) Bean, D. C.; Livermore, D. M.; Hall, L. M. C. Plasmids Imparting Sulfonamide Resistance in Escherichia Coli: Implications for Persistence. Antimicrobial Agents and Chemotherapy 2009, 53 (3), 1088–1093. https://doi.org/10.1128/AAC.00800-08.(125) Fernandez-Lopez, R.; Redondo, S.; Garcillan-Barcia, M. P.; de la Cruz, F. Towards a Taxonomy of Conjugative Plasmids. Current Opinion in Microbiology 2017, 38, 106–113. https://doi.org/10.1016/j.mib.2017.05.005.(126) Coluzzi, C.; Garcillán-Barcia, M. P.; de la Cruz, F.; Rocha, E. P. C. Evolution of Plasmid Mobility: Origin and Fate of Conjugative and Nonconjugative Plasmids. Molecular Biology and Evolution 2022, 39 (6), msac115. https://doi.org/10.1093/molbev/msac115.(127) Che, Y.; Yang, Y.; Xu, X.; Břinda, K.; Polz, M. F.; Hanage, W. P.; Zhang, T. Conjugative Plasmids Interact with Insertion Sequences to Shape the Horizontal Transfer of Antimicrobial Resistance Genes. Proc. Natl. Acad. Sci. U.S.A. 2021, 118 (6), e2008731118. https://doi.org/10.1073/pnas.2008731118.(128) Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K. L.; Threlfall, E. J. Identification of Plasmids by PCR-Based Replicon Typing. Journal of Microbiological Methods 2005, 63 (3), 219–228. https://doi.org/10.1016/j.mimet.2005.03.018.(129) Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids Using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob Agents Chemother 2014, 58 (7), 3895–3903. https://doi.org/10.1128/AAC.02412-14.(130) Johnson, T. J.; Bielak, E. M.; Fortini, D.; Hansen, L. H.; Hasman, H.; Debroy, C.; Nolan, L. K.; Carattoli, A. Expansion of the IncX Plasmid Family for Improved Identification and Typing of Novel Plasmids in Drug-Resistant Enterobacteriaceae. Plasmid 2012, 68 (1), 43–50. https://doi.org/10.1016/j.plasmid.2012.03.001.(131) Yang, Q.; Sun, J.; Li, L.; Deng, H.; Liu, B.; Fang, L.; Liao, X.; Liu, Y. IncF Plasmid Diversity in Multi-Drug Resistant Escherichia Coli Strains from Animals in China. Frontiers in Microbiology 2015, 6.(132) Szabó, M.; Nagy, T.; Wilk, T.; Farkas, T.; Hegyi, A.; Olasz, F.; Kiss, J. Characterization of Two Multidrug-Resistant IncA/C Plasmids from the 1960s by Using Oxford Nanopore MinION Sequencer Device. Antimicrobial Agents and Chemotherapy 2016, AAC.01121-16. https://doi.org/10.1128/AAC.01121-16.(133) Norberg, P.; Bergström, M.; Jethava, V.; Dubhashi, D.; Hermansson, M. The IncP-1 Plasmid Backbone Adapts to Different Host Bacterial Species and Evolves through Homologous Recombination. Nat Commun 2011, 2 (1), 268. https://doi.org/10.1038/ncomms1267.(134) Garcillán-Barcia, M. P.; Alvarado, A.; de la Cruz, F. Identification of Bacterial Plasmids Based on Mobility and Plasmid Population Biology. FEMS Microbiol Rev 2011, 35 (5), 936–956. https://doi.org/10.1111/j.1574-6976.2011.00291.x.(135) Garcillán-Barcia, M. P.; Francia, M. V.; de La Cruz, F. The Diversity of Conjugative Relaxases and Its Application in Plasmid Classification. FEMS Microbiol Rev 2009, 33 (3), 657–687. https://doi.org/10.1111/j.1574-6976.2009.00168.x.(136) Orlek, A.; Stoesser, N.; Anjum, M. F.; Doumith, M.; Ellington, M. J.; Peto, T.; Crook, D.; Woodford, N.; Walker, A. S.; Phan, H.; Sheppard, A. E. Plasmid Classification in an Era of Whole-Genome Sequencing: Application in Studies of Antibiotic Resistance Epidemiology. Frontiers in Microbiology 2017, 8.(137) Redondo-Salvo, S.; Fernández-López, R.; Ruiz, R.; Vielva, L.; de Toro, M.; Rocha, E. P. C.; Garcillán-Barcia, M. P.; de la Cruz, F. Pathways for Horizontal Gene Transfer in Bacteria Revealed by a Global Map of Their Plasmids. Nature Communications 2020, 11 (1), 3602. https://doi.org/10.1038/s41467-020-17278-2.(138) Mazel, D. Integrons: Agents of Bacterial Evolution. Nat Rev Microbiol 2006, 4 (8), 608–620. https://doi.org/10.1038/nrmicro1462.(139) Gillings, M. R. Integrons: Past, Present, and Future. Microbiol. Mol. Biol. Rev. 2014, 78 (2), 257–277. https://doi.org/10.1128/MMBR.00056-13.(140) Kazazian, H. H. Mobile Elements: Drivers of Genome Evolution. Science 2004, 303 (5664), 1626–1632. https://doi.org/10.1126/science.1089670.(141) Feschotte, C.; Pritham, E. J. DNA Transposons and the Evolution of Eukaryotic Genomes. Annual Review of Genetics 2007, 41 (1), 331–368. https://doi.org/10.1146/annurev.genet.40.110405.090448.(142) Slotkin, R. K.; Martienssen, R. Transposable Elements and the Epigenetic Regulation of the Genome. Nat Rev Genet 2007, 8 (4), 272–285. https://doi.org/10.1038/nrg2072.(143) Laroussi, H.; Aoudache, Y.; Robert, E.; Libante, V.; Thiriet, L.; Mias-Lucquin, D.; Douzi, B.; Roussel, Y.; Chauvot de Beauchêne, I.; Soler, N.; Leblond-Bourget, N. Exploration of DNA Processing Features Unravels Novel Properties of ICE Conjugation in Gram-Positive Bacteria. Nucleic Acids Research 2022, gkac607. https://doi.org/10.1093/nar/gkac607.(144) Xie, Z.; Tang, H. ISEScan: Automated Identification of Insertion Sequence Elements in Prokaryotic Genomes. Bioinformatics 2017, 33 (21), 3340–3347. https://doi.org/10.1093/bioinformatics/btx433.(145) Nzabarushimana, E.; Tang, H. Insertion Sequence Elements-Mediated Structural Variations in Bacterial Genomes. Mobile DNA 2018, 9 (1), 29. https://doi.org/10.1186/s13100-018-0134-3.(146) Camarillo-Guerrero, L. F.; Almeida, A.; Rangel-Pineros, G.; Finn, R. D.; Lawley, T. D. Massive Expansion of Human Gut Bacteriophage Diversity. Cell 2021, 184 (4), 1098-1109.e9. https://doi.org/10.1016/j.cell.2021.01.029.(147) Van der Auwera, G. A.; Andrup, L.; Mahillon, J. Conjugative Plasmid PAW63 Brings New Insights into the Genesis of the Bacillus Anthracis Virulence Plasmid PXO2 and of the Bacillus Thuringiensis Plasmid PBT9727. BMC Genomics 2005, 6 (1), 1–14. https://doi.org/10.1186/1471-2164-6-103.(148) Zhang, J.; Chiodini, R.; Badr, A.; Zhang, G. The Impact of Next-Generation Sequencing on Genomics. Journal of Genetics and Genomics 2011, 38 (3), 95–109. https://doi.org/10.1016/j.jgg.2011.02.003.(149) Deamer, D.; Akeson, M.; Branton, D. Three Decades of Nanopore Sequencing. Nature Biotechnology 2016, 34 (5), 518–524. https://doi.org/10.1038/nbt.3423.(150) Manrao, E. A.; Derrington, I. M.; Laszlo, A. H.; Langford, K. W.; Hopper, M. K.; Gillgren, N.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Reading DNA at Single-Nucleotide Resolution with a Mutant MspA Nanopore and Phi29 DNA Polymerase. Nat Biotechnol 2012, 30 (4), 349–353. https://doi.org/10.1038/nbt.2171.(151) Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K. F. Nanopore Sequencing Technology, Bioinformatics and Applications. Nat Biotechnol 2021, 39 (11), 1348–1365. https://doi.org/10.1038/s41587-021-01108-x.(152) Jain, M.; Koren, S.; Miga, K. H.; Quick, J.; Rand, A. C.; Sasani, T. A.; Tyson, J. R.; Beggs, A. D.; Dilthey, A. T.; Fiddes, I. T.; Malla, S.; Marriott, H.; Nieto, T.; O’Grady, J.; Olsen, H. E.; Pedersen, B. S.; Rhie, A.; Richardson, H.; Quinlan, A. R.; Snutch, T. P.; Tee, L.; Paten, B.; Phillippy, A. M.; Simpson, J. T.; Loman, N. J.; Loose, M. Nanopore Sequencing and Assembly of a Human Genome with Ultra-Long Reads. Nature Biotechnology 2018. https://doi.org/10.1038/nbt.4060.(153) Quick, J.; Ashton, P.; Calus, S.; Chatt, C.; Gossain, S.; Hawker, J.; Nair, S.; Neal, K.; Nye, K.; Peters, T.; De Pinna, E.; Robinson, E.; Struthers, K.; Webber, M.; Catto, A.; Dallman, T. J.; Hawkey, P.; Loman, N. J. Rapid Draft Sequencing and Real-Time Nanopore Sequencing in a Hospital Outbreak of Salmonella. Genome Biol 2015, 16. https://doi.org/10.1186/s13059-015-0677-2.(154) Davidov, K.; Iankelevich-Kounio, E.; Yakovenko, I.; Koucherov, Y.; Rubin-Blum, M.; Oren, M. Identification of Plastic-Associated Species in the Mediterranean Sea Using DNA Metabarcoding with Nanopore MinION. Sci Rep 2020, 10 (1), 17533. https://doi.org/10.1038/s41598-020-74180-z.(155) Mohapatra, M.; Yadav, R.; Rajput, V.; Dharne, M. S.; Rastogi, G. Metagenomic Analysis Reveals Genetic Insights on Biogeochemical Cycling, Xenobiotic Degradation, and Stress Resistance in Mudflat Microbiome. Journal of Environmental Management 2021, 292, 112738. https://doi.org/10.1016/j.jenvman.2021.112738.(156) Sereika, M.; Kirkegaard, R. H.; Karst, S. M.; Michaelsen, T. Y.; Sørensen, E. A.; Albertsen, M. Assessing Long-Read Sequencing with Nanopore R9, R10 and PacBio CCS to Obtain High-Quality Metagenome Assembled Genomes from Complex Microbial Communities; 2021; p 2021.10.27.466057. https://doi.org/10.1101/2021.10.27.466057.(157) Storteboom, H.; Arabi, M.; Davis, J. G.; Crimi, B.; Pruden, A. Identification of Antibiotic-Resistance-Gene Molecular Signatures Suitable as Tracers of Pristine River, Urban, and Agricultural Sources. Environmental Science & Technology 2010, 44 (6), 1947–1953. https://doi.org/10.1021/es902893f.(158) Berendonk, T. U.; Manaia, C. M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N.; Kreuzinger, N.; Huovinen, P.; Stefani, S.; Schwartz, T.; Kisand, V.; Baquero, F.; Martinez, J. L. Tackling Antibiotic Resistance: The Environmental Framework. Nature Reviews Microbiology 2015, 13 (5), 310–317. https://doi.org/10.1038/nrmicro3439.(159) Pei, R.; Kim, S.-C.; Carlson, K. H.; Pruden, A. Effect of River Landscape on the Sediment Concentrations of Antibiotics and Corresponding Antibiotic Resistance Genes (ARG). Water Research 2006, 40 (12), 2427–2435. https://doi.org/10.1016/j.watres.2006.04.017.(160) Luo, Y.; Mao, D.; Rysz, M.; Zhou, Q.; Zhang, H.; Xu, L.; JJ Alvarez, P. Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environmental science & technology 2010, 44 (19), 7220–7225.(161) Alonso, E.; Santos, A.; Riesco, P. Micro-Organism Re-Growth in Wastewater Disinfected by UV Radiation and Ozone: A Micro-Biological Study. Environmental Technology 2004, 25 (4), 433–441. https://doi.org/10.1080/09593332508618452.(162) Hultman, J.; Tamminen, M.; Pärnänen, K.; Cairns, J.; Karkman, A.; Virta, M. Host Range of Antibiotic Resistance Genes in Wastewater Treatment Plant Influent and Effluent. FEMS Microbiology Ecology 2018, 94 (4), fiy038. https://doi.org/10.1093/femsec/fiy038.(163) Munck, C.; Albertsen, M.; Telke, A.; Ellabaan, M.; Nielsen, P. H.; Sommer, M. O. A. Limited Dissemination of the Wastewater Treatment Plant Core Resistome. Nat Commun 2015, 6 (1), 1–10. https://doi.org/10.1038/ncomms9452.(164) Alcock, B. P.; Raphenya, A. R.; Lau, T. T. Y.; Tsang, K. K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L. V.; Cheng, A. A.; Liu, S.; Min, S. Y.; Miroshnichenko, A.; Tran, H.-K.; Werfalli, R. E.; Nasir, J. A.; Oloni, M.; Speicher, D. J.; Florescu, A.; Singh, B.; Faltyn, M.; Hernandez-Koutoucheva, A.; Sharma, A. N.; Bordeleau, E.; Pawlowski, A. C.; Zubyk, H. L.; Dooley, D.; Griffiths, E.; Maguire, F.; Winsor, G. L.; Beiko, R. G.; Brinkman, F. S. L.; Hsiao, W. W. L.; Domselaar, G. V.; McArthur, A. G. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res 2020, 48 (D1), D517–D525. https://doi.org/10.1093/nar/gkz935.(165) Yin, X.; Jiang, X.-T.; Chai, B.; Li, L.; Yang, Y.; Cole, J. R.; Tiedje, J. M.; Zhang, T.; Wren, J. ARGs-OAP v2.0 with an Expanded SARG Database and Hidden Markov Models for Enhancement Characterization and Quantification of Antibiotic Resistance Genes in Environmental Metagenomes. Bioinformatics 2018, 34 (13), 2263–2270. https://doi.org/10.1093/bioinformatics/bty053.(166) Yang, Y.; Li, B.; Ju, F.; Zhang, T. Exploring Variation of Antibiotic Resistance Genes in Activated Sludge over a Four-Year Period through a Metagenomic Approach. Environ. Sci. Technol. 2013, 47 (18), 10197–10205. https://doi.org/10.1021/es4017365.(167) Cao, M. D.; Nguyen, S. H.; Ganesamoorthy, D.; Elliott, A. G.; Cooper, M. A.; Coin, L. J. M. Scaffolding and Completing Genome Assemblies in Real-Time with Nanopore Sequencing. Nat Commun 2017, 8 (1), 14515. https://doi.org/10.1038/ncomms14515.(168) Judge, K.; Harris, S. R.; Reuter, S.; Parkhill, J.; Peacock, S. J. Early Insights into the Potential of the Oxford Nanopore MinION for the Detection of Antimicrobial Resistance Genes. J Antimicrob Chemother 2015, 70 (10), 2775–2778. https://doi.org/10.1093/jac/dkv206.(169) Schmidt, K.; Mwaigwisya, S.; Crossman, L. C.; Doumith, M.; Munroe, D.; Pires, C.; Khan, A. M.; Woodford, N.; Saunders, N. J.; Wain, J.; O’Grady, J.; Livermore, D. M. Identification of Bacterial Pathogens and Antimicrobial Resistance Directly from Clinical Urines by Nanopore-Based Metagenomic Sequencing. J Antimicrob Chemother 2017, 72 (1), 104–114. https://doi.org/10.1093/jac/dkw397.(170) Arango-Argoty, G. A.; Dai, D.; Pruden, A.; Vikesland, P.; Heath, L. S.; Zhang, L. NanoARG: A Web Service for Identification of Antimicrobial Resistance Elements from Nanopore-Derived Environmental Metagenomes. bioRxiv 2018, 483248. https://doi.org/10.1101/483248.(171) George, S.; Pankhurst, L.; Hubbard, A.; Votintseva, A.; Stoesser, N.; Sheppard, A. E.; Mathers, A.; Norris, R.; Navickaite, I.; Eaton, C.; Iqbal, Z.; Crook, D. W.; Phan, H. T. T. Resolving Plasmid Structures in Enterobacteriaceae Using the MinION Nanopore Sequencer: Assessment of MinION and MinION/Illumina Hybrid Data Assembly Approaches. Microbial Genomics 2017, 3 (8). https://doi.org/10.1099/mgen.0.000118.(172) Cao, M. D.; Ganesamoorthy, D.; Elliott, A. G.; Zhang, H.; Cooper, M. A.; Coin, L. J. M. Streaming Algorithms for Identification of Pathogens and Antibiotic Resistance Potential from Real-Time MinIONTM Sequencing. GigaScience 2016, 5, 32. https://doi.org/10.1186/s13742-016-0137-2.(173) Che, Y.; Xia, Y.; Liu, L.; Li, A.-D.; Yang, Y.; Zhang, T. Mobile Antibiotic Resistome in Wastewater Treatment Plants Revealed by Nanopore Metagenomic Sequencing. Microbiome 2019, 7 (1), 44. https://doi.org/10.1186/s40168-019-0663-0.(174) Dai, D.; Brown, C.; Bürgmann, H.; Larsson, D. G. J.; Nambi, I.; Zhang, T.; Flach, C.-F.; Pruden, A.; Vikesland, P. J. Long-Read Metagenomic Sequencing Reveals Shifts in Associations of Antibiotic Resistance Genes with Mobile Genetic Elements from Sewage to Activated Sludge. Microbiome 2022, 10 (1), 20. https://doi.org/10.1186/s40168-021-01216-5.(175) Yang, Y.; Che, Y.; Liu, L.; Wang, C.; Yin, X.; Deng, Y.; Yang, C.; Zhang, T. Rapid Absolute Quantification of Pathogens and ARGs by Nanopore Sequencing. Science of The Total Environment 2022, 809, 152190. https://doi.org/10.1016/j.scitotenv.2021.152190.(176) Yin, X.; Deng, Y.; Ma, L.; Wang, Y.; Chan, L. Y. L.; Zhang, T. Exploration of the Antibiotic Resistome in a Wastewater Treatment Plant by a Nine-Year Longitudinal Metagenomic Study. Environment International 2019, 133, 105270. https://doi.org/10.1016/j.envint.2019.105270.(177) Lee, K.; Kim, D.-W.; Lee, D.-H.; Kim, Y.-S.; Bu, J.-H.; Cha, J.-H.; Thawng, C. N.; Hwang, E.-M.; Seong, H. J.; Sul, W. J.; Wellington, E. M. H.; Quince, C.; Cha, C.-J. Mobile Resistome of Human Gut and Pathogen Drives Anthropogenic Bloom of Antibiotic Resistance. Microbiome 2020, 8 (1), 2. https://doi.org/10.1186/s40168-019-0774-7.(178) Su, J. Q.; Wei, B.; Xu, C. Y.; Qiao, M.; Zhu, Y. G. Functional Metagenomic Characterization of Antibiotic Resistance Genes in Agricultural Soils from China. Environment International 2014, 65, 9–15. https://doi.org/10.1016/j.envint.2013.12.010.(179) Jørgensen, T. S.; Kiil, A. S.; Hansen, M. A.; Sørensen, S. J.; Hansen, L. H. Current Strategies for Mobilome Research. Front Microbiol 2015, 5. https://doi.org/10.3389/fmicb.2014.00750.(180) Maguire, F.; Jia, B.; Gray, K. L.; Lau, W. Y. V.; Beiko, R. G.; Brinkman, F. S. L. Metagenome-Assembled Genome Binning Methods with Short Reads Disproportionately Fail for Plasmids and Genomic Islands. Microbial Genomics 2020, 6 (10), e000436. https://doi.org/10.1099/mgen.0.000436.(181) Martínez, J. L.; Coque, T. M.; Baquero, F. What Is a Resistance Gene? Ranking Risk in Resistomes. Nat Rev Microbiol 2015, 13 (2), 116–123. https://doi.org/10.1038/nrmicro3399.(182) Klümper, U.; Droumpali, A.; Dechesne, A.; Smets, B. F. Novel Assay to Measure the Plasmid Mobilizing Potential of Mixed Microbial Communities. Front. Microbiol. 2014, 0. https://doi.org/10.3389/fmicb.2014.00730.(183) Li, L.; Dechesne, A.; He, Z.; Madsen, J. S.; Nesme, J.; Sørensen, S. J.; Smets, B. F. Estimating the Transfer Range of Plasmids Encoding Antimicrobial Resistance in a Wastewater Treatment Plant Microbial Community. Environ. Sci. Technol. Lett. 2018, 5 (5), 260–265. https://doi.org/10.1021/acs.estlett.8b00105.(184) Stalder, T.; Press, M. O.; Sullivan, S.; Liachko, I.; Top, E. M. Linking the Resistome and Plasmidome to the Microbiome. The ISME Journal 2019, 1. https://doi.org/10.1038/s41396-019-0446-4.(185) Arber, W.; Linn, S. DNA Modification and Restriction. Annual Review of Biochemistry 1969, 38 (1), 467–500. https://doi.org/10.1146/annurev.bi.38.070169.002343.(186) López‐Garrido, J.; Cota, I.; Casadesús, J. Epigenetic Gene Regulation in Bacteria. In Reviews in Cell Biology and Molecular Medicine; American Cancer Society, 2012. https://doi.org/10.1002/3527600906.mcb.201100032.(187) Blow, M. J.; Clark, T. A.; Daum, C. G.; Deutschbauer, A. M.; Fomenkov, A.; Fries, R.; Froula, J.; Kang, D. D.; Malmstrom, R. R.; Morgan, R. D.; Posfai, J.; Singh, K.; Visel, A.; Wetmore, K.; Zhao, Z.; Rubin, E. M.; Korlach, J.; Pennacchio, L. A.; Roberts, R. J. The Epigenomic Landscape of Prokaryotes. PLOS Genetics 2016, 12 (2), e1005854. https://doi.org/10.1371/journal.pgen.1005854.(188) Beaulaurier, J.; Schadt, E. E.; Fang, G. Deciphering Bacterial Epigenomes Using Modern Sequencing Technologies. Nat Rev Genet 2019, 20 (3), 157–172. https://doi.org/10.1038/s41576-018-0081-3.(189) Liu, Q.; Georgieva, D. C.; Egli, D.; Wang, K. NanoMod: A Computational Tool to Detect DNA Modifications Using Nanopore Long-Read Sequencing Data. bioRxiv 2018, 277178. https://doi.org/10.1101/277178.(190) Fomenkov, A.; Sun, Z.; Murray, I. A.; Ruse, C.; McClung, C.; Yamaichi, Y.; Raleigh, E. A.; Roberts, R. J. Plasmid Replication-Associated Single-Strand-Specific Methyltransferases. Nucleic Acids Research 2020, 48 (22), 12858–12873. https://doi.org/10.1093/nar/gkaa1163.(191) Quick, J.; Loman, N. J.; Duraffour, S.; Simpson, J. T.; Severi, E.; Cowley, L.; Bore, J. A.; Koundouno, R.; Dudas, G.; Mikhail, A.; Ouédraogo, N.; Afrough, B.; Bah, A.; Baum, J. H. J.; Becker-Ziaja, B.; Boettcher, J. P.; Cabeza-Cabrerizo, M.; Camino-Sánchez, Á.; Carter, L. L.; Doerrbecker, J.; Enkirch, T.; Dorival, I. G.-; Hetzelt, N.; Hinzmann, J.; Holm, T.; Kafetzopoulou, L. E.; Koropogui, M.; Kosgey, A.; Kuisma, E.; Logue, C. H.; Mazzarelli, A.; Meisel, S.; Mertens, M.; Michel, J.; Ngabo, D.; Nitzsche, K.; Pallasch, E.; Patrono, L. V.; Portmann, J.; Repits, J. G.; Rickett, N. Y.; Sachse, A.; Singethan, K.; Vitoriano, I.; Yemanaberhan, R. L.; Zekeng, E. G.; Racine, T.; Bello, A.; Sall, A. A.; Faye, O.; Faye, O.; Magassouba, N.; Williams, C. V.; Amburgey, V.; Winona, L.; Davis, E.; Gerlach, J.; Washington, F.; Monteil, V.; Jourdain, M.; Bererd, M.; Camara, A.; Somlare, H.; Camara, A.; Gerard, M.; Bado, G.; Baillet, B.; Delaune, D.; Nebie, K. Y.; Diarra, A.; Savane, Y.; Pallawo, R. B.; Gutierrez, G. J.; Milhano, N.; Roger, I.; Williams, C. J.; Yattara, F.; Lewandowski, K.; Taylor, J.; Rachwal, P.; Turner, D. J.; Pollakis, G.; Hiscox, J. A.; Matthews, D. A.; Shea, M. K. O.; Johnston, A. M.; Wilson, D.; Hutley, E.; Smit, E.; Caro, A. D.; Wölfel, R.; Stoecker, K.; Fleischmann, E.; Gabriel, M.; Weller, S. A.; Koivogui, L.; Diallo, B.; Keïta, S.; Rambaut, A.; Formenty, P.; Günther, S.; Carroll, M. W. Real-Time, Portable Genome Sequencing for Ebola Surveillance. Nature 2016, 530 (7589), 228. https://doi.org/10.1038/nature16996.
修改评论