中文版 | English
题名

Using Nanopore Sequencing Deciphering Antibiotic Resistance Dissemination In The Wastewater Systems

姓名
姓名拼音
WU Ziqi
学号
11965002
学位类型
博士
学位专业
微生物学
学科门类/专业学位类别
理学
导师
夏雨
导师单位
环境科学与工程学院
外机构导师
Søren J. Sørensen
外机构导师单位
Section of Microbiology, University of Copenhagen, Denmark
论文答辩日期
2024-02-06
论文提交日期
2024-02-26
学位授予单位
哥本哈根大学
学位授予地点
哥本哈根,丹麦
摘要

There is mounting concern that wastewater sewer systems, as the receptacle for excreted antibiotic resistance genes (ARGs), and horizontal gene transfer. Antimicrobial resistance genes readily transfer from pathogens and commensal hosts in human wastes to environmental strains and are better adapted to the sewer environment, which is efficiently driven by conjugative plasmid transfer. The WWTP influents often contain sewage of both domestic origin and hospital sources, which mainly harbour significant abundance and diversity of ARGs. Under the high pressure of antibiotic selection, the load of multi-resistant bacteria and genes in hospital sewage was higher than theirs in the domestic sewage, which potentially stimulate the transfer of ARGs from pathogens to environmental bacteria. It is however not clear to what extent the plasmid can act as a transmitter to facilitate the ARGs dissemination in this procedure. Conjugation, the most responsible HGT mechanism for mobilizing resistance among bacteria, might cause further dissemination of ARGs. Conjugative plasmids, encoded with multiple resistance genes, allow the acquisition of multidrug resistance in transfer and make an antibiotic selection from one to all. Understanding the fate of ARGs encoded on conjugative plasmids in sewage is therefore essential to disentangle its roles in ARG dissemination. Expect the surveillance of sewage inlets, the receiving water body from WWTP has also aroused concerns related to human health problems. Wastewater treatment plant (WWTP) effluent discharge could induce resistome enrichment in the receiving water environments. The downstream receiving water body of the WWTP was observed as an important reservoir for the transmission of pathogenic bacterial hosts with alarming resistance levels. Understanding the driving force shaping such resistome booming in receiving environments is essential to establish priority in mitigating ARG spread and evaluating health risks. However, this question cannot be fully elucidated without quantitating source tracking based on precise and extensive identification of the host populations of ARGs.

 This thesis was mainly to apply the pioneering sequencing technology-Oxford Nanopore Technologies to solve the problems mentioned above, which is principally divided into two chapters. The Introductory chapter explains the detailed background, aims, and hypothesis of the research targets. And in the Manuscript chapter, the main subjects, results, and opinions are thoroughly covered. The works in Manuscript I seek to decipher the fate of conjugative plasmids facilitating the dissemination of ARGs in the sewer influent to WWTPs. The sewer influent samples were collected from hospital sewers and residential sewers located in Denmark, Spain, and the United Kingdom. Three European countries with different antibiotic use practices were considered, and sampling campaigns were constructed in the winter, of 2018. We attempt to ascertain the general features and distinct patterns of the conjugative plasmids from different sewer sources. The culture-based nanopore barcoding sequencing method was introduced into this study, including the steps of exogenous plasmid isolation, permissiveness test, antibiotic susceptibility test, and nanopore barcoding whole genomic sequencing. These isolated conjugative plasmids displayed higher transfer efficiency in the hospital sewers than in the residential sewers across all countries and showed multiple antibiotic resistance with corresponding ARGs. Furthermore, the co-occurrence network analysis via Fisher exact test profiled the relationship among incompatibility genes, mobility groups, and ARGs encoded on the conjugative plasmids. We characterized the resistance phenotypes and genotypes carried by conjugative plasmids, especially those discharged from hospital and residential settings during conveyance in the sewers. Such a worrisome situation needs to be considered during sewage-based antibiotic resistance surveillance.

 The works in Manuscript II seek to understand the mechanism arousing the environmental resistome reservoir of coastal receiving water communities. This study audaciously applied nanopore sequencing technologies to comprehensively investigate the dissemination and enrichment of ARBs. A robust bioinformatic framework (ARGpore2) was constructed and carefully tested to predict resistance and establish plasmids/MGE-associated mobility. An overall consistent resistome was observed between Illumina-based and nanopore-based metagenomic approaches. However, compared to Illumina-assembled contigs, nanopore sequencing datasets generated a more reliable ARB profile that resistome of beta-lactamase carried by Escherichia overlooked by Illumina-assembled approach was accurately detected by nanopore sequencing, highlighting the power of assembly-free long-reads metagenomic approaches for assessing the mobile proportion of the resistome. The results suggested the receiving coastal system might be considered as a reservoir for ARGs mediated by the robust installation of WWTP-borne ARB community coupled with recombination and HGT enabled by plasmids and class 1 integrons. Consequently, in order to mitigate resistance pollution in receiving environments, advanced filtration or oxidative process should be included in the disinfection step of WWTPs to enable more complete disruption of pathogen cells and endospores during treatment.

 Manuscript III and Manuscript IV were mainly focused on exploring the application of nanopore technologies in deciphering the dissemination of ARGs in a special clinical environment (air dust in a hospital) and the functional genes encoded on extreme environmental (permafrost soil) microorganisms. In Manuscript III, we integrated a state-of-the-art metagenomic method to link ARGs to specific bacteria and we also confirmed the ARG transfer using cultural isolate whole genome Nanopore sequencing. Even though the whole study plan worked (from wet lab to data interpretation), we speculated that our survey (two-time points) only demonstrated limited ARG profiling and transfer information, meaning multiple survey years and more sampling frequencies (e.g. weekly or monthly) are needed. Additionally, Illumina sequencing still suffers from fragmented assembly and needs more turnaround time. The short-read sequencing methods were not able to address repetitive insertion sequences, which is often not avoidable in ARG regions. In Manuscript IV, to address the large data loss caused by the metagenomic assembly, we introduce FUNpore, a long-read correction and annotation framework. Such a correction-based annotation strategy showed promising precision and recall in functional annotation and could provide more permafrost microbial information. On-site MinION metagenomic sequencing of high-altitude permafrost soil showed that although 78.4% of genera were shared among vertical alpine, nitrate concentration, and solar radiation can lead to a certain level of community differentiation.

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2024-04
参考文献列表

(1) Sengupta, S.; Chattopadhyay, M.; Grossart, H.-P. The Multifaceted Roles of Antibiotics and Antibiotic Resistance in Nature. Frontiers in Microbiology 2013, 4.
(2) Sarmah, A. K.; Meyer, M. T.; Boxall, A. B. A. A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment. Chemosphere 2006, 65 (5), 725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026.
(3) Gross, M. Antibiotics in Crisis. Current Biology 2013, 23 (24), R1063–R1065. https://doi.org/10.1016/j.cub.2013.11.057.
(4) Wright, G. D. The Antibiotic Resistome: The Nexus of Chemical and Genetic Diversity. Nat Rev Microbiol 2007, 5 (3), 175–186. https://doi.org/10.1038/nrmicro1614.
(5) Wichmann, F.; Udikovic-Kolic, N.; Andrew, S.; Handelsman, J. Diverse Antibiotic Resistance Genes in Dairy Cow Manure. mBio 5 (2), e01017-13. https://doi.org/10.1128/mBio.01017-13.
(6) Zhu, Y.-G.; Johnson, T. A.; Su, J.-Q.; Qiao, M.; Guo, G.-X.; Stedtfeld, R. D.; Hashsham, S. A.; Tiedje, J. M. Diverse and Abundant Antibiotic Resistance Genes in Chinese Swine Farms. Proceedings of the National Academy of Sciences 2013, 110 (9), 3435–3440. https://doi.org/10.1073/pnas.1222743110.
(7) Baker, S.; Thomson, N.; Weill, F.-X.; Holt, K. E. Genomic Insights into the Emergence and Spread of Antimicrobial-Resistant Bacterial Pathogens. Science 2018, 360 (6390), 733–738. https://doi.org/10.1126/science.aar3777.
(8) Wang, F.; Xu, M.; Stedtfeld, R. D.; Sheng, H.; Fan, J.; Liu, M.; Chai, B.; Soares de Carvalho, T.; Li, H.; Li, Z.; Hashsham, S. A.; Tiedje, J. M. Long-Term Effect of Different Fertilization and Cropping Systems on the Soil Antibiotic Resistome. Environ. Sci. Technol. 2018. https://doi.org/10.1021/acs.est.8b04330.
(9) Allen, H. K.; Donato, J.; Wang, H. H.; Cloud-Hansen, K. A.; Davies, J.; Handelsman, J. Call of the Wild: Antibiotic Resistance Genes in Natural Environments. Nature Reviews Microbiology 2010, 8 (4), 251–259. https://doi.org/10.1038/nrmicro2312.
(10) D’Costa, V. M.; King, C. E.; Kalan, L.; Morar, M.; Sung, W. W. L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; Golding, G. B.; Poinar, H. N.; Wright, G. D. Antibiotic Resistance Is Ancient. Nature 2011, 477 (7365), 457–461. https://doi.org/10.1038/nature10388.
(11) Jansson, J. K.; Taş, N. The Microbial Ecology of Permafrost. Nature Reviews Microbiology 2014, 12 (6), 414–425. https://doi.org/10.1038/nrmicro3262.
(12) Johnson, S. S.; Zaikova, E.; Goerlitz, D. S.; Bai, Y.; Tighe, S. W. Real-Time DNA Sequencing in the Antarctic Dry Valleys Using the Oxford Nanopore Sequencer. J Biomol Tech 2017, 28 (1), 2–7. https://doi.org/10.7171/jbt.17-2801-009.
(13) Amos, G. C. A.; Ploumakis, S.; Zhang, L.; Hawkey, P. M.; Gaze, W. H.; Wellington, E. M. H. The Widespread Dissemination of Integrons throughout Bacterial Communities in a Riverine System. The ISME Journal 2018, 12 (3), 681–691. https://doi.org/10.1038/s41396-017-0030-8.
(14) Hatosy, S. M.; Martiny, A. C. The Ocean as a Global Reservoir of Antibiotic Resistance Genes. Appl. Environ. Microbiol. 2015, AEM.00736-15. https://doi.org/10.1128/AEM.00736-15.
(15) Bennett, P. M. Plasmid Encoded Antibiotic Resistance: Acquisition and Transfer of Antibiotic Resistance Genes in Bacteria. British Journal of Pharmacology 2008, 153 (S1), S347–S357. https://doi.org/10.1038/sj.bjp.0707607.
(16) Yao, Y.; Maddamsetti, R.; Weiss, A.; Ha, Y.; Wang, T.; Wang, S.; You, L. Intra- and Interpopulation Transposition of Mobile Genetic Elements Driven by Antibiotic Selection. Nat Ecol Evol 2022, 1–10. https://doi.org/10.1038/s41559-022-01705-2.
(17) Arnold, B. J.; Huang, I.-T.; Hanage, W. P. Horizontal Gene Transfer and Adaptive Evolution in Bacteria. Nat Rev Microbiol 2021, 1–13. https://doi.org/10.1038/s41579-021-00650-4.
(18) Qin, Y.; Guo, Z.; Huang, H.; Zhu, L.; Dong, S.; Zhu, Y.-G.; Cui, L.; Huang, Q. Widespread of Potential Pathogen-Derived Extracellular Vesicles Carrying Antibiotic Resistance Genes in Indoor Dust. Environ. Sci. Technol. 2022. https://doi.org/10.1021/acs.est.1c08654.
(19) Bourgeois, J. S.; Smith, C. M.; Ko, D. C. These Are the Genes You’re Looking For: Finding Host Resistance Genes. Trends in Microbiology 2021, 29 (4), 346–362. https://doi.org/10.1016/j.tim.2020.09.006.
(20) Oliveira, P. H.; Touchon, M.; Cury, J.; Rocha, E. P. C. The Chromosomal Organization of Horizontal Gene Transfer in Bacteria. Nat Commun 2017, 8 (1), 841. https://doi.org/10.1038/s41467-017-00808-w.(21) Lopatkin, A. J.; Meredith, H. R.; Srimani, J. K.; Pfeiffer, C.; Durrett, R.; You, L. Persistence and Reversal of Plasmid-Mediated Antibiotic Resistance. Nat Commun 2017, 8 (1), 1689. https://doi.org/10.1038/s41467-017-01532-1.(22) Lewis, K. Platforms for Antibiotic Discovery. Nat Rev Drug Discov 2013, 12 (5), 371–387. https://doi.org/10.1038/nrd3975.(23) Kwak, Y.-K.; Colque, P.; Byfors, S.; Giske, C. G.; Möllby, R.; Kühn, I. Surveillance of Antimicrobial Resistance among Escherichia Coli in Wastewater in Stockholm during 1 Year: Does It Reflect the Resistance Trends in the Society? International Journal of Antimicrobial Agents 2015, 45 (1), 25–32. https://doi.org/10.1016/j.ijantimicag.2014.09.016.(24) Huijbers, P. M. C.; Larsson, D. G. J.; Flach, C.-F. Surveillance of Antibiotic Resistant Escherichia Coli in Human Populations through Urban Wastewater in Ten European Countries. Environmental Pollution 2020, 261, 114200. https://doi.org/10.1016/j.envpol.2020.114200.(25) Pärnänen, K. M. M.; Narciso-da-Rocha, C.; Kneis, D.; Berendonk, T. U.; Cacace, D.; Do, T. T.; Elpers, C.; Fatta-Kassinos, D.; Henriques, I.; Jaeger, T.; Karkman, A.; Martinez, J. L.; Michael, S. G.; Michael-Kordatou, I.; O’Sullivan, K.; Rodriguez-Mozaz, S.; Schwartz, T.; Sheng, H.; Sørum, H.; Stedtfeld, R. D.; Tiedje, J. M.; Giustina, S. V. D.; Walsh, F.; Vaz-Moreira, I.; Virta, M.; Manaia, C. M. Antibiotic Resistance in European Wastewater Treatment Plants Mirrors the Pattern of Clinical Antibiotic Resistance Prevalence. Science Advances 2019, 5 (3), eaau9124. https://doi.org/10.1126/sciadv.aau9124.(26) Aminov, R. I.; Mackie, R. I. Evolution and Ecology of Antibiotic Resistance Genes. FEMS Microbiology Letters 2007, 271 (2), 147–161. https://doi.org/10.1111/j.1574-6968.2007.00757.x.(27) Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V. Molecular Mechanisms of Antibiotic Resistance. Nature Reviews Microbiology 2015, 13 (1), 42–51. https://doi.org/10.1038/nrmicro3380.(28) Liu, G.; Ling, B.-D.; Zeng, Y.; Lin, L.; Xie, Y.-E.; Lei, J. Molecular Characterization of Extended-Spectrum Beta-Lactamases Produced by Clinical Isolates of Enterobacter Cloacae from a Teaching Hospital in China. Jpn. J. Infect. Dis. 2008, 61 (4), 286–289.(29) Paiva, M. C.; Reis, M. P.; Costa, P. S.; Dias, M. F.; Bleicher, L.; Scholte, L. L. S.; Nardi, R. M. D.; Nascimento, A. M. A. Identification of New Bacteria Harboring QnrS and Aac(6′)-Ib/Cr and Mutations Possibly Involved in Fluoroquinolone Resistance in Raw Sewage and Activated Sludge Samples from a Full-Scale WWTP. Water Research 2017, 110, 27–37. https://doi.org/10.1016/j.watres.2016.11.056.(30) Darby, E. M.; Trampari, E.; Siasat, P.; Gaya, M. S.; Alav, I.; Webber, M. A.; Blair, J. M. A. Molecular Mechanisms of Antibiotic Resistance Revisited. Nat Rev Microbiol 2022, 1–16. https://doi.org/10.1038/s41579-022-00820-y.(31) Perry, J. A.; Westman, E. L.; Wright, G. D. The Antibiotic Resistome: What’s New? Current Opinion in Microbiology 2014, 21, 45–50. https://doi.org/10.1016/j.mib.2014.09.002.(32) Dantas, G.; Sommer, M. O. Context Matters — the Complex Interplay between Resistome Genotypes and Resistance Phenotypes. Current Opinion in Microbiology 2012, 15 (5), 577–582. https://doi.org/10.1016/j.mib.2012.07.004.(33) D’Costa, V. M.; Griffiths, E.; Wright, G. D. Expanding the Soil Antibiotic Resistome: Exploring Environmental Diversity. Current Opinion in Microbiology 2007, 10 (5), 481–489. https://doi.org/10.1016/j.mib.2007.08.009.(34) Finley, R. L.; Collignon, P.; Larsson, D. G. J.; McEwen, S. A.; Li, X.-Z.; Gaze, W. H.; Reid-Smith, R.; Timinouni, M.; Graham, D. W.; Topp, E. The Scourge of Antibiotic Resistance: The Important Role of the Environment. Clinical Infectious Diseases 2013, 57 (5), 704–710. https://doi.org/10.1093/cid/cit355.(35) Pawlowski, A. C.; Wang, W.; Koteva, K.; Barton, H. A.; McArthur, A. G.; Wright, G. D. A Diverse Intrinsic Antibiotic Resistome from a Cave Bacterium. Nat Commun 2016, 7 (1), 13803. https://doi.org/10.1038/ncomms13803.(36) Forsberg, K. J.; Reyes, A.; Wang, B.; Selleck, E. M.; Sommer, M. O. A.; Dantas, G. The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. Science 2012, 337 (6098), 1107–1111. https://doi.org/10.1126/science.1220761.(37) Perry, J. A.; Wright, G. D. Forces Shaping the Antibiotic Resistome. BioEssays 2014, 36 (12), 1179–1184. https://doi.org/10.1002/bies.201400128.(38) Perry, J.; Wright, G. The Antibiotic Resistance “Mobilome”: Searching for the Link between Environment and Clinic. Frontiers in Microbiology 2013, 4.(39) Kim, D.-W.; Cha, C.-J. Antibiotic Resistome from the One-Health Perspective: Understanding and Controlling Antimicrobial Resistance Transmission. Exp Mol Med 2021, 53 (3), 301–309. https://doi.org/10.1038/s12276-021-00569-z.(40) Reller, L. B.; Weinstein, M.; Jorgensen, J. H.; Ferraro, M. J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clinical Infectious Diseases 2009, 49 (11), 1749–1755. https://doi.org/10.1086/647952.(41) Matuschek, E.; Brown, D. F. J.; Kahlmeter, G. Development of the EUCAST Disk Diffusion Antimicrobial Susceptibility Testing Method and Its Implementation in Routine Microbiology Laboratories. Clinical Microbiology and Infection 2014, 20 (4), O255–O266. https://doi.org/10.1111/1469-0691.12373.(42) Baker, C. N.; Stocker, S. A.; Culver, D. H.; Thornsberry, C. Comparison of the E Test to Agar Dilution, Broth Microdilution, and Agar Diffusion Susceptibility Testing Techniques by Using a Special Challenge Set of Bacteria. Journal of Clinical Microbiology 1991, 29 (3), 533–538. https://doi.org/10.1128/jcm.29.3.533-538.1991.(43) Leff, L. G.; Fasina, K.; Engohang-Ndong, J. Detecting Antibiotic Resistance Genes in Anthropogenically Impacted Streams and Rivers. Current Opinion in Biotechnology 2023, 79, 102878. https://doi.org/10.1016/j.copbio.2022.102878.(44) Waseem, H.; Jameel, S.; Ali, J.; Saleem Ur Rehman, H.; Tauseef, I.; Farooq, U.; Jamal, A.; Ali, M. I. Contributions and Challenges of High Throughput QPCR for Determining Antimicrobial Resistance in the Environment: A Critical Review. Molecules 2019, 24 (1), 163. https://doi.org/10.3390/molecules24010163.(45) Doyle, R. M.; Burgess, C.; Williams, R.; Gorton, R.; Booth, H.; Brown, J.; Bryant, J. M.; Chan, J.; Creer, D.; Holdstock, J.; Kunst, H.; Lozewicz, S.; Platt, G.; Romero, E. Y.; Speight, G.; Tiberi, S.; Abubakar, I.; Lipman, M.; McHugh, T. D.; Breuer, J. Direct Whole-Genome Sequencing of Sputum Accurately Identifies Drug-Resistant Mycobacterium Tuberculosis Faster than MGIT Culture Sequencing. J. Clin. Microbiol. 2018, 56 (8), e00666-18. https://doi.org/10.1128/JCM.00666-18.(46) Cao, J.; Hu, Y.; Liu, F.; Wang, Y.; Bi, Y.; Lv, N.; Li, J.; Zhu, B.; Gao, G. F. Metagenomic Analysis Reveals the Microbiome and Resistome in Migratory Birds. Microbiome 2020, 8 (1), 26. https://doi.org/10.1186/s40168-019-0781-8.(47) Muntean, M. M.; Muntean, A.-A.; Preda, M.; Manolescu, L. S. C.; Dragomirescu, C.; Popa, M.-I.; Popa, G. L. Phenotypic and Genotypic Detection Methods for Antimicrobial Resistance in ESKAPE Pathogens (Review). Exp Ther Med 2022, 24 (2), 508. https://doi.org/10.3892/etm.2022.11435.(48) Torsvik, V.; Øvreås, L.; Thingstad, T. F. Prokaryotic Diversity--Magnitude, Dynamics, and Controlling Factors. Science 2002, 296 (5570), 1064–1066. https://doi.org/10.1126/science.1071698.(49) Thompson, L. R.; Sanders, J. G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K. J.; Prill, R. J.; Tripathi, A.; Gibbons, S. M.; Ackermann, G.; Navas-Molina, J. A.; Janssen, S.; Kopylova, E.; Vázquez-Baeza, Y.; González, A.; Morton, J. T.; Mirarab, S.; Zech Xu, Z.; Jiang, L.; Haroon, M. F.; Kanbar, J.; Zhu, Q.; Jin Song, S.; Kosciolek, T.; Bokulich, N. A.; Lefler, J.; Brislawn, C. J.; Humphrey, G.; Owens, S. M.; Hampton-Marcell, J.; Berg-Lyons, D.; McKenzie, V.; Fierer, N.; Fuhrman, J. A.; Clauset, A.; Stevens, R. L.; Shade, A.; Pollard, K. S.; Goodwin, K. D.; Jansson, J. K.; Gilbert, J. A.; Knight, R. A Communal Catalogue Reveals Earth’s Multiscale Microbial Diversity. Nature 2017, 551 (7681), 457–463. https://doi.org/10.1038/nature24621.(50) Ofiţeru, I. D.; Lunn, M.; Curtis, T. P.; Wells, G. F.; Criddle, C. S.; Francis, C. A.; Sloan, W. T. Combined Niche and Neutral Effects in a Microbial Wastewater Treatment Community. Proceedings of the National Academy of Sciences 2010, 107 (35), 15345–15350. https://doi.org/10.1073/pnas.1000604107.(51) Mateo-Sagasta, J.; Raschid-Sally, L.; Thebo, A. Global Wastewater and Sludge Production, Treatment and Use. In Wastewater: Economic Asset in an Urbanizing World; Drechsel, P., Qadir, M., Wichelns, D., Eds.; Springer Netherlands: Dordrecht, 2015; pp 15–38. https://doi.org/10.1007/978-94-017-9545-6_2.(52) Encyclopedia of Climate and Weather; Oxford University Press, 2011.(53) van Loosdrecht, M. C. M.; Brdjanovic, D. Anticipating the next Century of Wastewater Treatment. Science 2014, 344 (6191), 1452–1453. https://doi.org/10.1126/science.1255183.(54) Aristi, I.; Schiller, D. von; Arroita, M.; Barceló, D.; Ponsatí, L.; García‐Galán, M. J.; Sabater, S.; Elosegi, A.; Acuña, V. Mixed Effects of Effluents from a Wastewater Treatment Plant on River Ecosystem Metabolism: Subsidy or Stress? Freshwater Biology 2015, 60 (7), 1398–1410. https://doi.org/10.1111/fwb.12576.(55) Brienza, M.; Sauvêtre, A.; Ait-Mouheb, N.; Bru-Adan, V.; Coviello, D.; Lequette, K.; Patureau, D.; Chiron, S.; Wéry, N. Reclaimed Wastewater Reuse in Irrigation: Role of Biofilms in the Fate of Antibiotics and Spread of Antimicrobial Resistance. Water Research 2022, 221, 118830. https://doi.org/10.1016/j.watres.2022.118830.(56) Pei, R.; Cha, J.; Carlson, K. H.; Pruden, A. Response of Antibiotic Resistance Genes (ARG) to Biological Treatment in Dairy Lagoon Water. Environmental Science & Technology 2007, 41 (14), 5108–5113. https://doi.org/10.1021/es070051x.(57) Amos, G. C. A.; Hawkey, P. M.; Gaze, W. H.; Wellington, E. M. Waste Water Effluent Contributes to the Dissemination of CTX-M-15 in the Natural Environment. Journal of Antimicrobial Chemotherapy 2014, 69 (7), 1785–1791. https://doi.org/10.1093/jac/dku079.(58) González-Plaza, J. J.; Šimatović, A.; Milaković, M.; Bielen, A.; Wichmann, F.; Udiković-Kolić, N. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments. Front. Microbiol. 2018, 8. https://doi.org/10.3389/fmicb.2017.02675.(59) Cai, L.; Ju, F.; Zhang, T. Tracking Human Sewage Microbiome in a Municipal Wastewater Treatment Plant. Appl Microbiol Biotechnol 2014, 98 (7), 3317–3326. https://doi.org/10.1007/s00253-013-5402-z.(60) Newton, R. J.; McLellan, S. L.; Dila, D. K.; Vineis, J. H.; Morrison, H. G.; Eren, A. M.; Sogin, M. L. Sewage Reflects the Microbiomes of Human Populations. mBio 2015, 6 (2), e02574-14. https://doi.org/10.1128/mBio.02574-14.(61) Aarestrup, F. M.; Woolhouse, M. E. J. Using Sewage for Surveillance of Antimicrobial Resistance. Science 2020, 367 (6478), 630–632. https://doi.org/10.1126/science.aba3432.(62) Berglund, F.; Ebmeyer, S.; Kristiansson, E.; Larsson, D. G. J. Evidence for Wastewaters as Environments Where Mobile Antibiotic Resistance Genes Emerge. Commun Biol 2023, 6 (1), 1–11. https://doi.org/10.1038/s42003-023-04676-7.(63) Munk, P.; Brinch, C.; Møller, F. D.; Petersen, T. N.; Hendriksen, R. S.; Seyfarth, A. M.; Kjeldgaard, J. S.; Svendsen, C. A.; van Bunnik, B.; Berglund, F.; Larsson, D. G. J.; Koopmans, M.; Woolhouse, M.; Aarestrup, F. M. Genomic Analysis of Sewage from 101 Countries Reveals Global Landscape of Antimicrobial Resistance. Nat Commun 2022, 13 (1), 7251. https://doi.org/10.1038/s41467-022-34312-7.(64) Hutinel, M.; Huijbers, P. M. C.; Fick, J.; Åhrén, C.; Larsson, D. G. J.; Flach, C.-F. Population-Level Surveillance of Antibiotic Resistance in Escherichia Coli through Sewage Analysis. Euro Surveill 2019, 24 (37). https://doi.org/10.2807/1560-7917.es.2019.24.37.1800497.(65) Hendriksen, R. S.; Munk, P.; Njage, P.; van Bunnik, B.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Pedersen, S. K.; Kjeldgaard, J.; Kaas, R. S.; Clausen, P. T. L. C.; Vogt, J. K.; Leekitcharoenphon, P.; van de Schans, M. G. M.; Zuidema, T.; de Roda Husman, A. M.; Rasmussen, S.; Petersen, B.; Amid, C.; Cochrane, G.; Sicheritz-Ponten, T.; Schmitt, H.; Alvarez, J. R. M.; Aidara-Kane, A.; Pamp, S. J.; Lund, O.; Hald, T.; Woolhouse, M.; Koopmans, M. P.; Vigre, H.; Petersen, T. N.; Aarestrup, F. M. Global Monitoring of Antimicrobial Resistance Based on Metagenomics Analyses of Urban Sewage. Nat Commun 2019, 10 (1), 1124. https://doi.org/10.1038/s41467-019-08853-3.(66) Wei, Z.; Feng, K.; Wang, Z.; Zhang, Y.; Yang, M.; Zhu, Y.-G.; Virta, M. P. J.; Deng, Y. High-Throughput Single-Cell Technology Reveals the Contribution of Horizontal Gene Transfer to Typical Antibiotic Resistance Gene Dissemination in Wastewater Treatment Plants. Environ. Sci. Technol. 2021. https://doi.org/10.1021/acs.est.1c01250.(67) Raymond, F.; Boissinot, M.; Ouameur, A. A.; Déraspe, M.; Plante, P.-L.; Kpanou, S. R.; Bérubé, È.; Huletsky, A.; Roy, P. H.; Ouellette, M.; Bergeron, M. G.; Corbeil, J. Culture-Enriched Human Gut Microbiomes Reveal Core and Accessory Resistance Genes. Microbiome 2019, 7 (1), 56. https://doi.org/10.1186/s40168-019-0669-7.(68) Guo, J.; Li, J.; Chen, H.; Bond, P. L.; Yuan, Z. Metagenomic Analysis Reveals Wastewater Treatment Plants as Hotspots of Antibiotic Resistance Genes and Mobile Genetic Elements. Water Research 2017, 123, 468–478. https://doi.org/10.1016/j.watres.2017.07.002.(69) Wei, Z.; Feng, K.; Li, S.; Zhang, Y.; Chen, H.; Yin, H.; Xu, M.; Deng, Y. Exploring Abundance, Diversity and Variation of a Widespread Antibiotic Resistance Gene in Wastewater Treatment Plants. Environment International 2018, 117, 186–195. https://doi.org/10.1016/j.envint.2018.05.009.(70) Bonomo, R. A.; Szabo, D. Mechanisms of Multidrug Resistance in Acinetobacter Species and Pseudomonas Aeruginosa. Clinical Infectious Diseases 2006, 43 (Supplement_2), S49–S56. https://doi.org/10.1086/504477.(71) Kaskhedikar, M.; Chhabra, D. Multiple Drug Resistance in Aeromonas Hydrophila Isolates of Fish. Veterinary World 2010.(72) Anjum, M.; Madsen, J. S.; Nesme, J.; Jana, B.; Wiese, M.; Jasinskytė, D.; Nielsen, D. S.; Sørensen, S. J.; Dalsgaard, A.; Moodley, A.; Bortolaia, V.; Guardabassi, L. Fate of CMY-2-Encoding Plasmids Introduced into the Human Fecal Microbiota by Exogenous Escherichia Coli. Antimicrobial Agents and Chemotherapy 2019, 63 (5), e02528-18. https://doi.org/10.1128/AAC.02528-18.(73) Zarei-Baygi, A.; Harb, M.; Wang, P.; Stadler, L. B.; Smith, A. L. Evaluating Antibiotic Resistance Gene Correlations with Antibiotic Exposure Conditions in Anaerobic Membrane Bioreactors. Environ. Sci. Technol. 2019, 53 (7), 3599–3609. https://doi.org/10.1021/acs.est.9b00798.(74) Karkman, A.; Do, T. T.; Walsh, F.; Virta, M. P. J. Antibiotic-Resistance Genes in Waste Water. Trends in Microbiology 2018, 26 (3), 220–228. https://doi.org/10.1016/j.tim.2017.09.005.(75) Ju, F.; Beck, K.; Yin, X.; Maccagnan, A.; McArdell, C. S.; Singer, H. P.; Johnson, D. R.; Zhang, T.; Bürgmann, H. Wastewater Treatment Plant Resistomes Are Shaped by Bacterial Composition, Genetic Exchange, and Upregulated Expression in the Effluent Microbiomes. The ISME Journal 2018. https://doi.org/10.1038/s41396-018-0277-8.(76) Ma, L.; Li, A.-D.; Yin, X.-L.; Zhang, T. The Prevalence of Integrons as the Carrier of Antibiotic Resistance Genes in Natural and Man-Made Environments. Environ. Sci. Technol. 2017, 51 (10), 5721–5728. https://doi.org/10.1021/acs.est.6b05887.(77) Yang, Y.; Li, B.; Zou, S.; Fang, H. H. P.; Zhang, T. Fate of Antibiotic Resistance Genes in Sewage Treatment Plant Revealed by Metagenomic Approach. Water Research 2014, 62, 97–106. https://doi.org/10.1016/j.watres.2014.05.019.(78) Michael, I.; Rizzo, L.; McArdell, C. S.; Manaia, C. M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban Wastewater Treatment Plants as Hotspots for the Release of Antibiotics in the Environment: A Review. Water Research 2013, 47 (3), 957–995. https://doi.org/10.1016/j.watres.2012.11.027.(79) Zhang, Y.; Liu, C.; Chen, H.; Chen, J.; Li, J.; Teng, Y. Metagenomic Insights into Resistome Coalescence in an Urban Sewage Treatment Plant-River System. Water Research 2022, 224, 119061. https://doi.org/10.1016/j.watres.2022.119061.(80) Cacace, D.; Fatta-Kassinos, D.; Manaia, C. M.; Cytryn, E.; Kreuzinger, N.; Rizzo, L.; Karaolia, P.; Schwartz, T.; Alexander, J.; Merlin, C.; Garelick, H.; Schmitt, H.; de Vries, D.; Schwermer, C. U.; Meric, S.; Ozkal, C. B.; Pons, M.-N.; Kneis, D.; Berendonk, T. U. Antibiotic Resistance Genes in Treated Wastewater and in the Receiving Water Bodies: A Pan-European Survey of Urban Settings. Water Research 2019, 162, 320–330. https://doi.org/10.1016/j.watres.2019.06.039.(81) Mao, D.; Yu, S.; Rysz, M.; Luo, Y.; Yang, F.; Li, F.; Hou, J.; Mu, Q.; Alvarez, P. J. J. Prevalence and Proliferation of Antibiotic Resistance Genes in Two Municipal Wastewater Treatment Plants. Water Research 2015, 85, 458–466. https://doi.org/10.1016/j.watres.2015.09.010.(82) Osińska, A.; Korzeniewska, E.; Harnisz, M.; Felis, E.; Bajkacz, S.; Jachimowicz, P.; Niestępski, S.; Konopka, I. Small-Scale Wastewater Treatment Plants as a Source of the Dissemination of Antibiotic Resistance Genes in the Aquatic Environment. Journal of Hazardous Materials 2020, 381, 121221. https://doi.org/10.1016/j.jhazmat.2019.121221.(83) Laht, M.; Karkman, A.; Voolaid, V.; Ritz, C.; Tenson, T.; Virta, M.; Kisand, V. Abundances of Tetracycline, Sulphonamide and Beta-Lactam Antibiotic Resistance Genes in Conventional Wastewater Treatment Plants (WWTPs) with Different Waste Load. PLOS ONE 2014, 9 (8), e103705. https://doi.org/10.1371/journal.pone.0103705.(84) Bengtsson-Palme, J.; Hammarén, R.; Pal, C.; Östman, M.; Björlenius, B.; Flach, C.-F.; Fick, J.; Kristiansson, E.; Tysklind, M.; Larsson, D. G. J. Elucidating Selection Processes for Antibiotic Resistance in Sewage Treatment Plants Using Metagenomics. Science of The Total Environment 2016, 572, 697–712. https://doi.org/10.1016/j.scitotenv.2016.06.228.(85) Karkman, A.; Johnson, T. A.; Lyra, C.; Stedtfeld, R. D.; Tamminen, M.; Tiedje, J. M.; Virta, M. High-Throughput Quantification of Antibiotic Resistance Genes from an Urban Wastewater Treatment Plant. FEMS Microbiol Ecol 2016, 92 (3). https://doi.org/10.1093/femsec/fiw014.(86) Harris, S.; Cormican, M.; Cummins, E. The Effect of Conventional Wastewater Treatment on the Levels of Antimicrobial-Resistant Bacteria in Effluent: A Meta-Analysis of Current Studies. Environ Geochem Health 2012, 34 (6), 749–762. https://doi.org/10.1007/s10653-012-9493-8.(87) Quintela-Baluja, M.; Abouelnaga, M.; Romalde, J.; Su, J.-Q.; Yu, Y.; Gomez-Lopez, M.; Smets, B.; Zhu, Y.-G.; Graham, D. W. Spatial Ecology of a Wastewater Network Defines the Antibiotic Resistance Genes in Downstream Receiving Waters. Water Research 2019, 162, 347–357. https://doi.org/10.1016/j.watres.2019.06.075.(88) Zhang, Y.; Li, A.; Dai, T.; Li, F.; Xie, H.; Chen, L.; Wen, D. Cell-Free DNA: A Neglected Source for Antibiotic Resistance Genes Spreading from WWTPs. Environ. Sci. Technol. 2018, 52 (1), 248–257. https://doi.org/10.1021/acs.est.7b04283.(89) Beaber, J. W.; Hochhut, B.; Waldor, M. K. SOS Response Promotes Horizontal Dissemination of Antibiotic Resistance Genes. Nature 2004, 427 (6969), 72–74. https://doi.org/10.1038/nature02241.(90) Griffith, F. The Significance of Pneumococcal Types. J Hyg (Lond) 1928, 27 (2), 113–159. https://doi.org/10.1017/s0022172400031879.(91) Hayes, F. The Horizontal Gene Pool — Bacterial Plasmids and Gene Spread. Heredity 2001, 86 (2), 251–252. https://doi.org/10.1046/j.1365-2540.2001.0902b.x.(92) Jain, R.; Rivera, M. C.; Lake, J. A. Horizontal Gene Transfer among Genomes: The Complexity Hypothesis. Proceedings of the National Academy of Sciences 1999, 96 (7), 3801–3806. https://doi.org/10.1073/pnas.96.7.3801.(93) Arnold, B. J.; Huang, I.-T.; Hanage, W. P. Horizontal Gene Transfer and Adaptive Evolution in Bacteria. Nat Rev Microbiol 2022, 20 (4), 206–218. https://doi.org/10.1038/s41579-021-00650-4.(94) Lederberg, J.; Tatum, E. L. Gene Recombination in Escherichia Coli. Nature 1946, 158 (4016), 558–558. https://doi.org/10.1038/158558a0.(95) Norman, A.; Hansen, L. H.; Sørensen, S. J. Conjugative Plasmids: Vessels of the Communal Gene Pool. Philosophical Transactions of the Royal Society B: Biological Sciences 2009, 364 (1527), 2275–2289. https://doi.org/10.1098/rstb.2009.0037.(96) Zatyka, M.; Thomas, C. M. Control of Genes for Conjugative Transfer of Plasmids and Other Mobile Elements. FEMS Microbiol Rev 1998, 21 (4), 291–319. https://doi.org/10.1111/j.1574-6976.1998.tb00355.x.(97) Cascales, E.; Christie, P. J. The Versatile Bacterial Type IV Secretion Systems. Nat Rev Microbiol 2003, 1 (2), 137–149. https://doi.org/10.1038/nrmicro753.(98) Harrison, E.; Brockhurst, M. A. Plasmid-Mediated Horizontal Gene Transfer Is a Coevolutionary Process. Trends in Microbiology 2012, 20 (6), 262–267. https://doi.org/10.1016/j.tim.2012.04.003.(99) Rendueles, O.; Sousa, J. A. M. de; Bernheim, A.; Touchon, M.; Rocha, E. P. C. Genetic Exchanges Are More Frequent in Bacteria Encoding Capsules. PLOS Genetics 2018, 14 (12), e1007862. https://doi.org/10.1371/journal.pgen.1007862.(100) Paget, E.; Simonet, P. On the Track of Natural Transformation in Soil. FEMS Microbiology Ecology 1994, 15 (1), 109–117.(101) Lorenz, M. G.; Wackernagel, W. Bacterial Gene Transfer by Natural Genetic Transformation in the Environment. Microbiological Reviews 1994, 58 (3), 563–602. https://doi.org/10.1128/mr.58.3.563-602.1994.(102) Brockhurst, M. A.; Harrison, E.; Hall, J. P. J.; Richards, T.; McNally, A.; MacLean, C. The Ecology and Evolution of Pangenomes. Current Biology 2019, 29 (20), R1094–R1103. https://doi.org/10.1016/j.cub.2019.08.012.(103) San Millan, A. Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends in Microbiology 2018, 26 (12), 978–985. https://doi.org/10.1016/j.tim.2018.06.007.(104) Brown, L.; Wolf, J. M.; Prados-Rosales, R.; Casadevall, A. Through the Wall: Extracellular Vesicles in Gram-Positive Bacteria, Mycobacteria and Fungi. Nat Rev Microbiol 2015, 13 (10), 620–630. https://doi.org/10.1038/nrmicro3480.(105) Deatherage, B. L.; Cookson, B. T. Membrane Vesicle Release in Bacteria, Eukaryotes, and Archaea: A Conserved yet Underappreciated Aspect of Microbial Life. Infection and Immunity 2012, 80 (6), 1948–1957. https://doi.org/10.1128/IAI.06014-11.(106) Soler, N.; Forterre, P. Vesiduction: The Fourth Way of HGT. Environmental Microbiology 2020, 22 (7), 2457–2460. https://doi.org/10.1111/1462-2920.15056.(107) Frost, L. S.; Leplae, R.; Summers, A. O.; Toussaint, A. Mobile Genetic Elements: The Agents of Open Source Evolution. Nat Rev Microbiol 2005, 3 (9), 722–732. https://doi.org/10.1038/nrmicro1235.(108) Harrison, P. W.; Lower, R. P. J.; Kim, N. K. D.; Young, J. P. W. Introducing the Bacterial ‘Chromid’: Not a Chromosome, Not a Plasmid. Trends in Microbiology 2010, 18 (4), 141–148. https://doi.org/10.1016/j.tim.2009.12.010.(109) Thomas, C. M.; Nielsen, K. M. Mechanisms of, and Barriers to, Horizontal Gene Transfer between Bacteria. Nat Rev Microbiol 2005, 3 (9), 711–721. https://doi.org/10.1038/nrmicro1234.(110) Sørensen, S. J.; Bailey, M.; Hansen, L. H.; Kroer, N.; Wuertz, S. Studying Plasmid Horizontal Transfer in Situ: A Critical Review. Nature Reviews Microbiology 2005, 3 (9), 700–710. https://doi.org/10.1038/nrmicro1232.(111) Petersen, J.; Frank, O.; Göker, M.; Pradella, S. Extrachromosomal, Extraordinary and Essential—the Plasmids of the Roseobacter Clade. Appl Microbiol Biotechnol 2013, 97 (7), 2805–2815. https://doi.org/10.1007/s00253-013-4746-8.(112) Petersen, J.; Vollmers, J.; Ringel, V.; Brinkmann, H.; Ellebrandt-Sperling, C.; Spröer, C.; Howat, A. M.; Murrell, J. C.; Kaster, A.-K. A Marine Plasmid Hitchhiking Vast Phylogenetic and Geographic Distances. Proceedings of the National Academy of Sciences 2019, 116 (41), 20568–20573. https://doi.org/10.1073/pnas.1905878116.(113) Pilla, G.; Tang, C. M. Going around in Circles: Virulence Plasmids in Enteric Pathogens. Nature Reviews Microbiology 2018, 16 (8), 484–495. https://doi.org/10.1038/s41579-018-0031-2.(114) Hawkey, J.; Cottingham, H.; Tokolyi, A.; Wick, R. R.; Judd, L. M.; Cerdeira, L.; de Oliveira Garcia, D.; Wyres, K. L.; Holt, K. E. Y. 2022. Linear Plasmids in Klebsiella and Other Enterobacteriaceae. Microbial Genomics 8 (4), 000807. https://doi.org/10.1099/mgen.0.000807.(115) Hinnebusch, J.; Tilly, K. Linear Plasmids and Chromosomes in Bacteria. Molecular Microbiology 1993, 10 (5), 917–922. https://doi.org/10.1111/j.1365-2958.1993.tb00963.x.(116) Stewart, P. E.; Byram, R.; Grimm, D.; Tilly, K.; Rosa, P. A. The Plasmids of Borrelia Burgdorferi: Essential Genetic Elements of a Pathogen. Plasmid 2005, 53 (1), 1–13. https://doi.org/10.1016/j.plasmid.2004.10.006.(117) Smillie, C.; Garcillán-Barcia, M. P.; Francia, M. V.; Rocha, E. P. C.; de la Cruz, F. Mobility of Plasmids. Microbiol Mol Biol Rev 2010, 74 (3), 434–452. https://doi.org/10.1128/MMBR.00020-10.(118) Cabello, F.; Timmis, K.; Cohen, S. N. Replication Control in a Composite Plasmid Constructed by in Vitro Linkage of Two Distinct Replicons. Nature 1976, 259 (5541), 285–290. https://doi.org/10.1038/259285a0.(119) Bayley, S. A.; Morris, D. W.; Broda, P. The Relationship of Degradative and Resistance Plasmids of Pseudomonas Belonging to the Same Incompatibility Group. Nature 1979, 280 (5720), 338–339. https://doi.org/10.1038/280338a0.(120) Velappan, N.; Sblattero, D.; Chasteen, L.; Pavlik, P.; Bradbury, A. R. M. Plasmid Incompatibility: More Compatible than Previously Thought? Protein Engineering, Design and Selection 2007, 20 (7), 309–313. https://doi.org/10.1093/protein/gzm005.(121) Rosen, J.; Ryder, T.; Ohtsubo, H.; Ohtsubo, E. Role of RNA Transcripts in Replication Incompatibility and Copy Number Control in Antibiotic Resistance Plasmid Derivatives. Nature 1981, 290 (5809), 794–797. https://doi.org/10.1038/290794a0.(122) Rozwandowicz, M.; Brouwer, M. S. M.; Fischer, J.; Wagenaar, J. A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D. J.; Hordijk, J. Plasmids Carrying Antimicrobial Resistance Genes in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy 2018, 73 (5), 1121–1137. https://doi.org/10.1093/jac/dkx488.(123) Hordijk, J.; Mevius, D. J.; Kant, A.; Bos, M. E. H.; Graveland, H.; Bosman, A. B.; Hartskeerl, C. M.; Heederik, D. J. J.; Wagenaar, J. A. Within-Farm Dynamics of ESBL/AmpC-Producing Escherichia Coli in Veal Calves: A Longitudinal Approach. Journal of Antimicrobial Chemotherapy 2013, 68 (11), 2468–2476. https://doi.org/10.1093/jac/dkt219.(124) Bean, D. C.; Livermore, D. M.; Hall, L. M. C. Plasmids Imparting Sulfonamide Resistance in Escherichia Coli: Implications for Persistence. Antimicrobial Agents and Chemotherapy 2009, 53 (3), 1088–1093. https://doi.org/10.1128/AAC.00800-08.(125) Fernandez-Lopez, R.; Redondo, S.; Garcillan-Barcia, M. P.; de la Cruz, F. Towards a Taxonomy of Conjugative Plasmids. Current Opinion in Microbiology 2017, 38, 106–113. https://doi.org/10.1016/j.mib.2017.05.005.(126) Coluzzi, C.; Garcillán-Barcia, M. P.; de la Cruz, F.; Rocha, E. P. C. Evolution of Plasmid Mobility: Origin and Fate of Conjugative and Nonconjugative Plasmids. Molecular Biology and Evolution 2022, 39 (6), msac115. https://doi.org/10.1093/molbev/msac115.(127) Che, Y.; Yang, Y.; Xu, X.; Břinda, K.; Polz, M. F.; Hanage, W. P.; Zhang, T. Conjugative Plasmids Interact with Insertion Sequences to Shape the Horizontal Transfer of Antimicrobial Resistance Genes. Proc. Natl. Acad. Sci. U.S.A. 2021, 118 (6), e2008731118. https://doi.org/10.1073/pnas.2008731118.(128) Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K. L.; Threlfall, E. J. Identification of Plasmids by PCR-Based Replicon Typing. Journal of Microbiological Methods 2005, 63 (3), 219–228. https://doi.org/10.1016/j.mimet.2005.03.018.(129) Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids Using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob Agents Chemother 2014, 58 (7), 3895–3903. https://doi.org/10.1128/AAC.02412-14.(130) Johnson, T. J.; Bielak, E. M.; Fortini, D.; Hansen, L. H.; Hasman, H.; Debroy, C.; Nolan, L. K.; Carattoli, A. Expansion of the IncX Plasmid Family for Improved Identification and Typing of Novel Plasmids in Drug-Resistant Enterobacteriaceae. Plasmid 2012, 68 (1), 43–50. https://doi.org/10.1016/j.plasmid.2012.03.001.(131) Yang, Q.; Sun, J.; Li, L.; Deng, H.; Liu, B.; Fang, L.; Liao, X.; Liu, Y. IncF Plasmid Diversity in Multi-Drug Resistant Escherichia Coli Strains from Animals in China. Frontiers in Microbiology 2015, 6.(132) Szabó, M.; Nagy, T.; Wilk, T.; Farkas, T.; Hegyi, A.; Olasz, F.; Kiss, J. Characterization of Two Multidrug-Resistant IncA/C Plasmids from the 1960s by Using Oxford Nanopore MinION Sequencer Device. Antimicrobial Agents and Chemotherapy 2016, AAC.01121-16. https://doi.org/10.1128/AAC.01121-16.(133) Norberg, P.; Bergström, M.; Jethava, V.; Dubhashi, D.; Hermansson, M. The IncP-1 Plasmid Backbone Adapts to Different Host Bacterial Species and Evolves through Homologous Recombination. Nat Commun 2011, 2 (1), 268. https://doi.org/10.1038/ncomms1267.(134) Garcillán-Barcia, M. P.; Alvarado, A.; de la Cruz, F. Identification of Bacterial Plasmids Based on Mobility and Plasmid Population Biology. FEMS Microbiol Rev 2011, 35 (5), 936–956. https://doi.org/10.1111/j.1574-6976.2011.00291.x.(135) Garcillán-Barcia, M. P.; Francia, M. V.; de La Cruz, F. The Diversity of Conjugative Relaxases and Its Application in Plasmid Classification. FEMS Microbiol Rev 2009, 33 (3), 657–687. https://doi.org/10.1111/j.1574-6976.2009.00168.x.(136) Orlek, A.; Stoesser, N.; Anjum, M. F.; Doumith, M.; Ellington, M. J.; Peto, T.; Crook, D.; Woodford, N.; Walker, A. S.; Phan, H.; Sheppard, A. E. Plasmid Classification in an Era of Whole-Genome Sequencing: Application in Studies of Antibiotic Resistance Epidemiology. Frontiers in Microbiology 2017, 8.(137) Redondo-Salvo, S.; Fernández-López, R.; Ruiz, R.; Vielva, L.; de Toro, M.; Rocha, E. P. C.; Garcillán-Barcia, M. P.; de la Cruz, F. Pathways for Horizontal Gene Transfer in Bacteria Revealed by a Global Map of Their Plasmids. Nature Communications 2020, 11 (1), 3602. https://doi.org/10.1038/s41467-020-17278-2.(138) Mazel, D. Integrons: Agents of Bacterial Evolution. Nat Rev Microbiol 2006, 4 (8), 608–620. https://doi.org/10.1038/nrmicro1462.(139) Gillings, M. R. Integrons: Past, Present, and Future. Microbiol. Mol. Biol. Rev. 2014, 78 (2), 257–277. https://doi.org/10.1128/MMBR.00056-13.(140) Kazazian, H. H. Mobile Elements: Drivers of Genome Evolution. Science 2004, 303 (5664), 1626–1632. https://doi.org/10.1126/science.1089670.(141) Feschotte, C.; Pritham, E. J. DNA Transposons and the Evolution of Eukaryotic Genomes. Annual Review of Genetics 2007, 41 (1), 331–368. https://doi.org/10.1146/annurev.genet.40.110405.090448.(142) Slotkin, R. K.; Martienssen, R. Transposable Elements and the Epigenetic Regulation of the Genome. Nat Rev Genet 2007, 8 (4), 272–285. https://doi.org/10.1038/nrg2072.(143) Laroussi, H.; Aoudache, Y.; Robert, E.; Libante, V.; Thiriet, L.; Mias-Lucquin, D.; Douzi, B.; Roussel, Y.; Chauvot de Beauchêne, I.; Soler, N.; Leblond-Bourget, N. Exploration of DNA Processing Features Unravels Novel Properties of ICE Conjugation in Gram-Positive Bacteria. Nucleic Acids Research 2022, gkac607. https://doi.org/10.1093/nar/gkac607.(144) Xie, Z.; Tang, H. ISEScan: Automated Identification of Insertion Sequence Elements in Prokaryotic Genomes. Bioinformatics 2017, 33 (21), 3340–3347. https://doi.org/10.1093/bioinformatics/btx433.(145) Nzabarushimana, E.; Tang, H. Insertion Sequence Elements-Mediated Structural Variations in Bacterial Genomes. Mobile DNA 2018, 9 (1), 29. https://doi.org/10.1186/s13100-018-0134-3.(146) Camarillo-Guerrero, L. F.; Almeida, A.; Rangel-Pineros, G.; Finn, R. D.; Lawley, T. D. Massive Expansion of Human Gut Bacteriophage Diversity. Cell 2021, 184 (4), 1098-1109.e9. https://doi.org/10.1016/j.cell.2021.01.029.(147) Van der Auwera, G. A.; Andrup, L.; Mahillon, J. Conjugative Plasmid PAW63 Brings New Insights into the Genesis of the Bacillus Anthracis Virulence Plasmid PXO2 and of the Bacillus Thuringiensis Plasmid PBT9727. BMC Genomics 2005, 6 (1), 1–14. https://doi.org/10.1186/1471-2164-6-103.(148) Zhang, J.; Chiodini, R.; Badr, A.; Zhang, G. The Impact of Next-Generation Sequencing on Genomics. Journal of Genetics and Genomics 2011, 38 (3), 95–109. https://doi.org/10.1016/j.jgg.2011.02.003.(149) Deamer, D.; Akeson, M.; Branton, D. Three Decades of Nanopore Sequencing. Nature Biotechnology 2016, 34 (5), 518–524. https://doi.org/10.1038/nbt.3423.(150) Manrao, E. A.; Derrington, I. M.; Laszlo, A. H.; Langford, K. W.; Hopper, M. K.; Gillgren, N.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Reading DNA at Single-Nucleotide Resolution with a Mutant MspA Nanopore and Phi29 DNA Polymerase. Nat Biotechnol 2012, 30 (4), 349–353. https://doi.org/10.1038/nbt.2171.(151) Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K. F. Nanopore Sequencing Technology, Bioinformatics and Applications. Nat Biotechnol 2021, 39 (11), 1348–1365. https://doi.org/10.1038/s41587-021-01108-x.(152) Jain, M.; Koren, S.; Miga, K. H.; Quick, J.; Rand, A. C.; Sasani, T. A.; Tyson, J. R.; Beggs, A. D.; Dilthey, A. T.; Fiddes, I. T.; Malla, S.; Marriott, H.; Nieto, T.; O’Grady, J.; Olsen, H. E.; Pedersen, B. S.; Rhie, A.; Richardson, H.; Quinlan, A. R.; Snutch, T. P.; Tee, L.; Paten, B.; Phillippy, A. M.; Simpson, J. T.; Loman, N. J.; Loose, M. Nanopore Sequencing and Assembly of a Human Genome with Ultra-Long Reads. Nature Biotechnology 2018. https://doi.org/10.1038/nbt.4060.(153) Quick, J.; Ashton, P.; Calus, S.; Chatt, C.; Gossain, S.; Hawker, J.; Nair, S.; Neal, K.; Nye, K.; Peters, T.; De Pinna, E.; Robinson, E.; Struthers, K.; Webber, M.; Catto, A.; Dallman, T. J.; Hawkey, P.; Loman, N. J. Rapid Draft Sequencing and Real-Time Nanopore Sequencing in a Hospital Outbreak of Salmonella. Genome Biol 2015, 16. https://doi.org/10.1186/s13059-015-0677-2.(154) Davidov, K.; Iankelevich-Kounio, E.; Yakovenko, I.; Koucherov, Y.; Rubin-Blum, M.; Oren, M. Identification of Plastic-Associated Species in the Mediterranean Sea Using DNA Metabarcoding with Nanopore MinION. Sci Rep 2020, 10 (1), 17533. https://doi.org/10.1038/s41598-020-74180-z.(155) Mohapatra, M.; Yadav, R.; Rajput, V.; Dharne, M. S.; Rastogi, G. Metagenomic Analysis Reveals Genetic Insights on Biogeochemical Cycling, Xenobiotic Degradation, and Stress Resistance in Mudflat Microbiome. Journal of Environmental Management 2021, 292, 112738. https://doi.org/10.1016/j.jenvman.2021.112738.(156) Sereika, M.; Kirkegaard, R. H.; Karst, S. M.; Michaelsen, T. Y.; Sørensen, E. A.; Albertsen, M. Assessing Long-Read Sequencing with Nanopore R9, R10 and PacBio CCS to Obtain High-Quality Metagenome Assembled Genomes from Complex Microbial Communities; 2021; p 2021.10.27.466057. https://doi.org/10.1101/2021.10.27.466057.(157) Storteboom, H.; Arabi, M.; Davis, J. G.; Crimi, B.; Pruden, A. Identification of Antibiotic-Resistance-Gene Molecular Signatures Suitable as Tracers of Pristine River, Urban, and Agricultural Sources. Environmental Science & Technology 2010, 44 (6), 1947–1953. https://doi.org/10.1021/es902893f.(158) Berendonk, T. U.; Manaia, C. M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N.; Kreuzinger, N.; Huovinen, P.; Stefani, S.; Schwartz, T.; Kisand, V.; Baquero, F.; Martinez, J. L. Tackling Antibiotic Resistance: The Environmental Framework. Nature Reviews Microbiology 2015, 13 (5), 310–317. https://doi.org/10.1038/nrmicro3439.(159) Pei, R.; Kim, S.-C.; Carlson, K. H.; Pruden, A. Effect of River Landscape on the Sediment Concentrations of Antibiotics and Corresponding Antibiotic Resistance Genes (ARG). Water Research 2006, 40 (12), 2427–2435. https://doi.org/10.1016/j.watres.2006.04.017.(160) Luo, Y.; Mao, D.; Rysz, M.; Zhou, Q.; Zhang, H.; Xu, L.; JJ Alvarez, P. Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environmental science & technology 2010, 44 (19), 7220–7225.(161) Alonso, E.; Santos, A.; Riesco, P. Micro-Organism Re-Growth in Wastewater Disinfected by UV Radiation and Ozone: A Micro-Biological Study. Environmental Technology 2004, 25 (4), 433–441. https://doi.org/10.1080/09593332508618452.(162) Hultman, J.; Tamminen, M.; Pärnänen, K.; Cairns, J.; Karkman, A.; Virta, M. Host Range of Antibiotic Resistance Genes in Wastewater Treatment Plant Influent and Effluent. FEMS Microbiology Ecology 2018, 94 (4), fiy038. https://doi.org/10.1093/femsec/fiy038.(163) Munck, C.; Albertsen, M.; Telke, A.; Ellabaan, M.; Nielsen, P. H.; Sommer, M. O. A. Limited Dissemination of the Wastewater Treatment Plant Core Resistome. Nat Commun 2015, 6 (1), 1–10. https://doi.org/10.1038/ncomms9452.(164) Alcock, B. P.; Raphenya, A. R.; Lau, T. T. Y.; Tsang, K. K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L. V.; Cheng, A. A.; Liu, S.; Min, S. Y.; Miroshnichenko, A.; Tran, H.-K.; Werfalli, R. E.; Nasir, J. A.; Oloni, M.; Speicher, D. J.; Florescu, A.; Singh, B.; Faltyn, M.; Hernandez-Koutoucheva, A.; Sharma, A. N.; Bordeleau, E.; Pawlowski, A. C.; Zubyk, H. L.; Dooley, D.; Griffiths, E.; Maguire, F.; Winsor, G. L.; Beiko, R. G.; Brinkman, F. S. L.; Hsiao, W. W. L.; Domselaar, G. V.; McArthur, A. G. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res 2020, 48 (D1), D517–D525. https://doi.org/10.1093/nar/gkz935.(165) Yin, X.; Jiang, X.-T.; Chai, B.; Li, L.; Yang, Y.; Cole, J. R.; Tiedje, J. M.; Zhang, T.; Wren, J. ARGs-OAP v2.0 with an Expanded SARG Database and Hidden Markov Models for Enhancement Characterization and Quantification of Antibiotic Resistance Genes in Environmental Metagenomes. Bioinformatics 2018, 34 (13), 2263–2270. https://doi.org/10.1093/bioinformatics/bty053.(166) Yang, Y.; Li, B.; Ju, F.; Zhang, T. Exploring Variation of Antibiotic Resistance Genes in Activated Sludge over a Four-Year Period through a Metagenomic Approach. Environ. Sci. Technol. 2013, 47 (18), 10197–10205. https://doi.org/10.1021/es4017365.(167) Cao, M. D.; Nguyen, S. H.; Ganesamoorthy, D.; Elliott, A. G.; Cooper, M. A.; Coin, L. J. M. Scaffolding and Completing Genome Assemblies in Real-Time with Nanopore Sequencing. Nat Commun 2017, 8 (1), 14515. https://doi.org/10.1038/ncomms14515.(168) Judge, K.; Harris, S. R.; Reuter, S.; Parkhill, J.; Peacock, S. J. Early Insights into the Potential of the Oxford Nanopore MinION for the Detection of Antimicrobial Resistance Genes. J Antimicrob Chemother 2015, 70 (10), 2775–2778. https://doi.org/10.1093/jac/dkv206.(169) Schmidt, K.; Mwaigwisya, S.; Crossman, L. C.; Doumith, M.; Munroe, D.; Pires, C.; Khan, A. M.; Woodford, N.; Saunders, N. J.; Wain, J.; O’Grady, J.; Livermore, D. M. Identification of Bacterial Pathogens and Antimicrobial Resistance Directly from Clinical Urines by Nanopore-Based Metagenomic Sequencing. J Antimicrob Chemother 2017, 72 (1), 104–114. https://doi.org/10.1093/jac/dkw397.(170) Arango-Argoty, G. A.; Dai, D.; Pruden, A.; Vikesland, P.; Heath, L. S.; Zhang, L. NanoARG: A Web Service for Identification of Antimicrobial Resistance Elements from Nanopore-Derived Environmental Metagenomes. bioRxiv 2018, 483248. https://doi.org/10.1101/483248.(171) George, S.; Pankhurst, L.; Hubbard, A.; Votintseva, A.; Stoesser, N.; Sheppard, A. E.; Mathers, A.; Norris, R.; Navickaite, I.; Eaton, C.; Iqbal, Z.; Crook, D. W.; Phan, H. T. T. Resolving Plasmid Structures in Enterobacteriaceae Using the MinION Nanopore Sequencer: Assessment of MinION and MinION/Illumina Hybrid Data Assembly Approaches. Microbial Genomics 2017, 3 (8). https://doi.org/10.1099/mgen.0.000118.(172) Cao, M. D.; Ganesamoorthy, D.; Elliott, A. G.; Zhang, H.; Cooper, M. A.; Coin, L. J. M. Streaming Algorithms for Identification of Pathogens and Antibiotic Resistance Potential from Real-Time MinIONTM Sequencing. GigaScience 2016, 5, 32. https://doi.org/10.1186/s13742-016-0137-2.(173) Che, Y.; Xia, Y.; Liu, L.; Li, A.-D.; Yang, Y.; Zhang, T. Mobile Antibiotic Resistome in Wastewater Treatment Plants Revealed by Nanopore Metagenomic Sequencing. Microbiome 2019, 7 (1), 44. https://doi.org/10.1186/s40168-019-0663-0.(174) Dai, D.; Brown, C.; Bürgmann, H.; Larsson, D. G. J.; Nambi, I.; Zhang, T.; Flach, C.-F.; Pruden, A.; Vikesland, P. J. Long-Read Metagenomic Sequencing Reveals Shifts in Associations of Antibiotic Resistance Genes with Mobile Genetic Elements from Sewage to Activated Sludge. Microbiome 2022, 10 (1), 20. https://doi.org/10.1186/s40168-021-01216-5.(175) Yang, Y.; Che, Y.; Liu, L.; Wang, C.; Yin, X.; Deng, Y.; Yang, C.; Zhang, T. Rapid Absolute Quantification of Pathogens and ARGs by Nanopore Sequencing. Science of The Total Environment 2022, 809, 152190. https://doi.org/10.1016/j.scitotenv.2021.152190.(176) Yin, X.; Deng, Y.; Ma, L.; Wang, Y.; Chan, L. Y. L.; Zhang, T. Exploration of the Antibiotic Resistome in a Wastewater Treatment Plant by a Nine-Year Longitudinal Metagenomic Study. Environment International 2019, 133, 105270. https://doi.org/10.1016/j.envint.2019.105270.(177) Lee, K.; Kim, D.-W.; Lee, D.-H.; Kim, Y.-S.; Bu, J.-H.; Cha, J.-H.; Thawng, C. N.; Hwang, E.-M.; Seong, H. J.; Sul, W. J.; Wellington, E. M. H.; Quince, C.; Cha, C.-J. Mobile Resistome of Human Gut and Pathogen Drives Anthropogenic Bloom of Antibiotic Resistance. Microbiome 2020, 8 (1), 2. https://doi.org/10.1186/s40168-019-0774-7.(178) Su, J. Q.; Wei, B.; Xu, C. Y.; Qiao, M.; Zhu, Y. G. Functional Metagenomic Characterization of Antibiotic Resistance Genes in Agricultural Soils from China. Environment International 2014, 65, 9–15. https://doi.org/10.1016/j.envint.2013.12.010.(179) Jørgensen, T. S.; Kiil, A. S.; Hansen, M. A.; Sørensen, S. J.; Hansen, L. H. Current Strategies for Mobilome Research. Front Microbiol 2015, 5. https://doi.org/10.3389/fmicb.2014.00750.(180) Maguire, F.; Jia, B.; Gray, K. L.; Lau, W. Y. V.; Beiko, R. G.; Brinkman, F. S. L. Metagenome-Assembled Genome Binning Methods with Short Reads Disproportionately Fail for Plasmids and Genomic Islands. Microbial Genomics 2020, 6 (10), e000436. https://doi.org/10.1099/mgen.0.000436.(181) Martínez, J. L.; Coque, T. M.; Baquero, F. What Is a Resistance Gene? Ranking Risk in Resistomes. Nat Rev Microbiol 2015, 13 (2), 116–123. https://doi.org/10.1038/nrmicro3399.(182) Klümper, U.; Droumpali, A.; Dechesne, A.; Smets, B. F. Novel Assay to Measure the Plasmid Mobilizing Potential of Mixed Microbial Communities. Front. Microbiol. 2014, 0. https://doi.org/10.3389/fmicb.2014.00730.(183) Li, L.; Dechesne, A.; He, Z.; Madsen, J. S.; Nesme, J.; Sørensen, S. J.; Smets, B. F. Estimating the Transfer Range of Plasmids Encoding Antimicrobial Resistance in a Wastewater Treatment Plant Microbial Community. Environ. Sci. Technol. Lett. 2018, 5 (5), 260–265. https://doi.org/10.1021/acs.estlett.8b00105.(184) Stalder, T.; Press, M. O.; Sullivan, S.; Liachko, I.; Top, E. M. Linking the Resistome and Plasmidome to the Microbiome. The ISME Journal 2019, 1. https://doi.org/10.1038/s41396-019-0446-4.(185) Arber, W.; Linn, S. DNA Modification and Restriction. Annual Review of Biochemistry 1969, 38 (1), 467–500. https://doi.org/10.1146/annurev.bi.38.070169.002343.(186) López‐Garrido, J.; Cota, I.; Casadesús, J. Epigenetic Gene Regulation in Bacteria. In Reviews in Cell Biology and Molecular Medicine; American Cancer Society, 2012. https://doi.org/10.1002/3527600906.mcb.201100032.(187) Blow, M. J.; Clark, T. A.; Daum, C. G.; Deutschbauer, A. M.; Fomenkov, A.; Fries, R.; Froula, J.; Kang, D. D.; Malmstrom, R. R.; Morgan, R. D.; Posfai, J.; Singh, K.; Visel, A.; Wetmore, K.; Zhao, Z.; Rubin, E. M.; Korlach, J.; Pennacchio, L. A.; Roberts, R. J. The Epigenomic Landscape of Prokaryotes. PLOS Genetics 2016, 12 (2), e1005854. https://doi.org/10.1371/journal.pgen.1005854.(188) Beaulaurier, J.; Schadt, E. E.; Fang, G. Deciphering Bacterial Epigenomes Using Modern Sequencing Technologies. Nat Rev Genet 2019, 20 (3), 157–172. https://doi.org/10.1038/s41576-018-0081-3.(189) Liu, Q.; Georgieva, D. C.; Egli, D.; Wang, K. NanoMod: A Computational Tool to Detect DNA Modifications Using Nanopore Long-Read Sequencing Data. bioRxiv 2018, 277178. https://doi.org/10.1101/277178.(190) Fomenkov, A.; Sun, Z.; Murray, I. A.; Ruse, C.; McClung, C.; Yamaichi, Y.; Raleigh, E. A.; Roberts, R. J. Plasmid Replication-Associated Single-Strand-Specific Methyltransferases. Nucleic Acids Research 2020, 48 (22), 12858–12873. https://doi.org/10.1093/nar/gkaa1163.(191) Quick, J.; Loman, N. J.; Duraffour, S.; Simpson, J. T.; Severi, E.; Cowley, L.; Bore, J. A.; Koundouno, R.; Dudas, G.; Mikhail, A.; Ouédraogo, N.; Afrough, B.; Bah, A.; Baum, J. H. J.; Becker-Ziaja, B.; Boettcher, J. P.; Cabeza-Cabrerizo, M.; Camino-Sánchez, Á.; Carter, L. L.; Doerrbecker, J.; Enkirch, T.; Dorival, I. G.-; Hetzelt, N.; Hinzmann, J.; Holm, T.; Kafetzopoulou, L. E.; Koropogui, M.; Kosgey, A.; Kuisma, E.; Logue, C. H.; Mazzarelli, A.; Meisel, S.; Mertens, M.; Michel, J.; Ngabo, D.; Nitzsche, K.; Pallasch, E.; Patrono, L. V.; Portmann, J.; Repits, J. G.; Rickett, N. Y.; Sachse, A.; Singethan, K.; Vitoriano, I.; Yemanaberhan, R. L.; Zekeng, E. G.; Racine, T.; Bello, A.; Sall, A. A.; Faye, O.; Faye, O.; Magassouba, N.; Williams, C. V.; Amburgey, V.; Winona, L.; Davis, E.; Gerlach, J.; Washington, F.; Monteil, V.; Jourdain, M.; Bererd, M.; Camara, A.; Somlare, H.; Camara, A.; Gerard, M.; Bado, G.; Baillet, B.; Delaune, D.; Nebie, K. Y.; Diarra, A.; Savane, Y.; Pallawo, R. B.; Gutierrez, G. J.; Milhano, N.; Roger, I.; Williams, C. J.; Yattara, F.; Lewandowski, K.; Taylor, J.; Rachwal, P.; Turner, D. J.; Pollakis, G.; Hiscox, J. A.; Matthews, D. A.; Shea, M. K. O.; Johnston, A. M.; Wilson, D.; Hutley, E.; Smit, E.; Caro, A. D.; Wölfel, R.; Stoecker, K.; Fleischmann, E.; Gabriel, M.; Weller, S. A.; Koivogui, L.; Diallo, B.; Keïta, S.; Rambaut, A.; Formenty, P.; Günther, S.; Carroll, M. W. Real-Time, Portable Genome Sequencing for Ebola Surveillance. Nature 2016, 530 (7589), 228. https://doi.org/10.1038/nature16996.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/719118
专题南方科技大学
工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
Wu ZQ. Using Nanopore Sequencing Deciphering Antibiotic Resistance Dissemination In The Wastewater Systems[D]. 哥本哈根,丹麦. 哥本哈根大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11965002-吴子麒-环境科学与工程(13804KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴子麒]的文章
百度学术
百度学术中相似的文章
[吴子麒]的文章
必应学术
必应学术中相似的文章
[吴子麒]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。