题名 | EXPLORATION OF GALLIUM OXIDE DEVICES FOR POWER APPLICATIONS |
姓名 | |
姓名拼音 | HE Minghao
|
学号 | 11955010
|
学位类型 | 博士
|
学位专业 | Electrical and Computer Engineering
|
导师 | |
导师单位 | 深港微电子学院
|
外机构导师 | Ang Kah-Wee
|
外机构导师单位 | National University of Singapore
|
论文答辩日期 | 2023-11-06
|
论文提交日期 | 2024-02-29
|
学位授予单位 | 新加坡国立大学
|
学位授予地点 | 新加坡
|
摘要 | Beta gallium oxide (β-Ga2O3) is an emerging candidate for the next generation of power devices due to its wide bandgap (~4.9 eV) property. This characteristic holds great promise for applications in high-power and high-radiation environments. The Baliga Figure of Merit (BFOM), calculated based on its high critical field (~8 MV/cm), is more than three times greater than the conventional wide bandgap materials like GaN and SiC Recent research has shown the potential of Ga2O3 devices, particularly Schottky barrier diode (SBD) and metal-oxide-semiconductor field-effect transistors (MOSFET). An intriguing finding shows that Ga2O3 device fabricated on wafer without packaging and stored in exposed environment (air) exhibits no degradation in electrical performance even after two years. This finding highlights the non-reactive nature of the oxide semiconductor and suggests a high level of reliability for Ga2O3-based devices. In addition, the use of the melt-growth technique for Ga2O3 offers a promising and cost-effective approach for bulk device platform. To date, single crystal Ga2O3 6-inch wafer for power application has been reported by Novel Crystal Technology, Inc. The first part of the thesis focuses on enhancing the Ga2O3 Schottky interface. Nickel (Ni) with a high work function (5.01 eV) has been widely accepted as the anode metal for Ga2O3 SBD. However, Ni is a fast diffuser and will cause contamination at the Schottky interface during metal deposition and subsequent fabrication processes.1 To counteract Ni diffusion, a thin interfacial layer is inserted between the metal and semiconductor. This interlayer is formed using the aluminum reaction method proposed in this work. The resulting metal-interlayer-semiconductor (MIS) SBD demonstrates improved subthreshold slope (61 mV/dec) and uniformity across the wafer. Additionally, the forward voltage drop is significantly reduced from 1.28 V to 0.79 V. Furthermore, a modified thermionic emission (TE) model based on Gaussian distributed barrier heights is used to evaluate the role of the interlayer. Despite the exceptional characteristics of the Ga2O3 SBD, the lack of p-type Ga2O3 is preventing it from achieving even higher voltage blocking capability. The second part of the thesis introduces various methods to address this issue. In order to achieve bipolar operation on Ga2O3, p-type alternatives are explored to form p-n heterojunction. One option involves using nickel oxide (NiOx), which is patterned using lithography and lift-off process to form a trench merged p-i-n Schottky diode (TMPS). The resulting TMPS exhibits an improved breakdown voltage (~79%) and negligible degradation in on-resistance. A model is proposed to extract the optimal pattern design and is validated through experimental results. Another approach is to use magnesium-doped p-type gallium nitride (p-GaN) as an alternative for p-type Ga2O3. A high-quality and uniform 2-inch wafer-scale Ga2O3/p-GaN heterojunction is successfully demonstrated. The fabricated p-n diode manifests an advancement based on Ga2O3 for power applications. Finally, instead of forming a p-type heterojunction on Ga2O3, a Mg-doped Ga2O3 current blocking layer (CBL) is introduced, exhibiting exceptional peak electric field reduction as a homojunction. The Mg-doping is achieved via a low-cost spin-on-glass (SOG) technique, which does not cause lattice damage. The unipolar operation characteristic of Ga2O3 also raises concerns for Ga2O3-based metal-oxide-semiconductor field-effect-transistor (MOSFET), as conventional Ga2O3 MOSFET typically operate in depletion-mode (D-mode). In the final segment of the thesis, an innovative approach is presented, which introduces an enhancement-mode (E-mode) Ga2O3 MOSFET based on charge trapping layer (CTL) technique. This CTL method showcases a wide threshold voltage tuning window and exceptional reverse blocking capabilities, making it well-suited for power applications. To gain insights into the trap profile within the CTL and assess the reliability of the proposed technique, photon-stimulated characterization and time-dependent dielectric breakdown (TDDB) tests are conducted. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2019
|
学位授予年份 | 2024-03
|
参考文献列表 | J. Lindroos, D. P. Fenning, D. J. Backlund, E. Verlage, A. Gorgulla, S. K. Estreicher, H. Savin, and T. Buonassisi, "Nickel: A very fast diffuser in silicon," J. Appl. Phys. 113 (20) (2013).S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, and S. Rajan, "Delta- doped β-gallium oxide field-effect transistor," Appl. Phys. Express 10 (5) (2017).M. J. Tadjer, J. L. Lyons, N. Nepal, J. A. Freitas, A. D. Koehler, and G. M. Foster, "Editors' Choice—Review—Theory and Characterization of Doping and Defects in β-Ga2O3," ECS Journal of Solid State Science and Technology 8 (7), Q3187 (2019).H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, "Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method," Jpn. J. Appl. Phys. 47 (11), 8506 (2008). H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, "Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy," Appl. Phys. Express 8 (1), 015503 (2014).Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, "Czochralski grown Ga2O3 crystals," J. Cryst. Growth 220 (4), 510 (2000).E. G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, "Large-size β-Ga2O3 single crystals and wafers," J. Cryst. Growth 270 (3), 420 (2004).B. J. Baliga, Advanced Power Rectifier Concepts. (Springer New York, NY, 2009).M. Higashiwaki, "β-Ga2O3 material properties, growth technologies, and devices: a review," AAPPS Bulletin 32 (1), 3 (2022).M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, "Recent progress in Ga2O3 power devices," Semicond. Sci. Technol. (2016).S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, "A review of Ga2O3 materials, processing, and devices," Appl. Phys. Rev. (2018).R. Roy, V. G. Hill, and E. F. Osborn, "Polymorphism of Ga2O3 and the System Ga2O3—H2O," Journal of the American Chemical Society 74 (3), 719 (1952).R. Qiao, H. Zhang, S. Zhao, L. Yuan, R. Jia, B. Peng, and Y. Zhang, "A state-of-art review on gallium oxide field-effect transistors," J. Phys. D: Appl. Phys. 55 (38) (2022).B. Wang, M. Xiao, Z. Zhang, Y. Wang, Y. Qin, Q. Song, G.-Q. Lu, K. Ngo, and Y. Zhang, "Chip Size Minimization for Wide and Ultrawide Bandgap Power Devices," IEEE Trans. Electron Devices, 1 (2023).C. Wang, J. Zhang, S. Xu, C. Zhang, Q. Feng, Y. Zhang, J. Ning, S. Zhao, H. Zhou, and Y. Hao, "Progress in state-of-the-art technologies of Ga2O3 devices," J. Phys. D: Appl. Phys. 54 (24) (2021).C. Zhang, F. Liao, X. Liang, H. Gong, Q. Liu, L. Li, X. Qin, X. Huang, and C. Huang, "Electronic transport properties in metal doped beta- Ga2O3: A first principles study," Physica B 562, 124 (2019).M. H. Wong, C.-H. Lin, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, and M. Higashiwaki, "Acceptor doping of β-Ga2O3 by Mg and N ion implantations," Appl. Phys. Lett. 113 (10) (2018).X. Zhou, M. Li, J. Zhang, L. Shang, K. Jiang, Y. Li, L. Zhu, Z. Hu, and J. Chu, "High Quality p-Type Mg-Doped β-Ga2O3-δ Films for Solar- Blind Photodetectors," IEEE Electron Device Lett., 1 (2022).Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, "On the bulk β-Ga2O3 single crystals grown by the Czochralski method," J. Cryst. Growth (2014).B. J. Baliga, Fundamentals of Power Semiconductor Devices.S. Kumar, H. Murakami, Y. Kumagai, and M. Higashiwaki, "Vertical β- Ga2O3 Schottky barrier diodes with trench staircase field plate," Appl. Phys. Express 15 (5), 054001 (2022).F. Zhou, H. Gong, W. Xu, X. Yu, Y. Xu, Y. Yang, F. f. Ren, S. Gu, Y. Zheng, R. Zhang, J. Ye, and H. Lu, "1.95-kV Beveled-Mesa NiO/β- Ga2O3 Heterojunction Diode With 98.5% Conversion Efficiency and Over Million-Times Overvoltage Ruggedness," IEEE Trans. Power Electron. 37 (2), 1223 (2022).C. H. Lin, Y. Yuda, M. H. Wong, M. Sato, N. Takekawa, K. Konishi, T. Watahiki, M. Yamamuka, H. Murakami, Y. Kumagai, and M. Higashiwaki, "Vertical Ga2O3 Schottky Barrier Diodes With Guard Ring Formed by Nitrogen-Ion Implantation," IEEE Electron Device Lett. 40 (9), 1487 (2019).B. J. Baliga, "Power semiconductor device figure of merit for high- frequency applications," IEEE Electron Device Lett. 10 (10), 455 (1989).K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Si-Ion Implantation Doping in β-Ga2O3 and Its Application to Fabrication of Low-Resistance Ohmic Contacts," Appl. Phys. Express 6 (8), 086502 (2013).M. Higashiwaki, K. Sasaki, T. Kamimura, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, "Depletion- mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics," Appl. Phys. Lett. 103 (12), 123511 (2013).J. Ma and G. Yoo, "Low Subthreshold Swing Double-Gate β-Ga2O-3 Field-Effect Transistors With Polycrystalline Hafnium Oxide Dielectrics," IEEE Electron Device Lett. 40 (8), 1317 (2019).K. Zeng, J. S. Wallace, C. Heimburger, K. Sasaki, A. Kuramata, T. Masui, J. A. Gardella, and U. Singisetti, "Ga2O3 MOSFETs Using Spin- On-Glass Source/Drain Doping Technology," IEEE Electron Device Lett. 38 (4), 513 (2017).B. R. Samantha and Z. Andriy, in Proc.SPIE (2020), Vol. 11281, p. 112810H.S. B. Reese, T. Remo, J. Green, and A. Zakutayev, "How Much Will Gallium Oxide Power Electronics Cost?," Joule 3 (4), 903 (2019).W. Mu, Z. Jia, Y. Yin, Q. Hu, Y. Li, B. Wu, J. Zhang, and X. Tao, "High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method," J. Alloys Compd. 714, 453 (2017).D. A. Axinte, D. S. Srinivasu, M. C. Kong, and P. W. Butler-Smith, "Abrasive waterjet cutting of polycrystalline diamond: A preliminary investigation," Int. J. Mach. Tools Manuf. 49 (10), 797 (2009).M. Higashiwaki, in Gallium Oxide, edited by Shizuo Fujita Masataka Higashiwaki (Springer Cham, 2021), pp. 5.K. Akito, K. Kimiyoshi, W. Shinya, Y. Yu, M. Takekazu, and Y. Shigenobu, in Proc.SPIE (2018), Vol. 10533, p. 105330E.M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, "High optical and structural quality of GaN epilayers grown on (-201) β-Ga2O3," Appl. Phys. Lett. 105 (4), 042112 (2014).B. Feng, Z. Li, F. Cheng, L. Xu, T. Liu, Z. Huang, F. Li, J. Feng, X. Chen, Y. Wu, G. He, and S. Ding, "Investigation of β-Ga2O3 Film Growth Mechanism on c-Plane Sapphire Substrate by Ozone Molecular Beam Epitaxy," physica status solidi (a) 218 (4), 2000457 (2021).H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, "Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy," Appl. Phys. Express 8 (1), 015503 (2015).K. Goto, K. Konishi, H. Murakami, Y. Kumagai, B. Monemar, M. Higashiwaki, A. Kuramata, and S. Yamakoshi, "Halide vapor phaseepitaxy of Si doped β-Ga2O-3 and its electrical properties," Thin Solid Films 666, 182 (2018).M. Higashiwaki, A. Kuramata, H. Murakami, and Y. Kumagai, "State- of-the-art technologies of gallium oxide power devices," J. Phys. D: Appl. Phys. 50 (33), 333002 (2017).M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates," Appl. Phys. Lett. 100 (1) (2012).N. Moser, J. McCandless, A. Crespo, K. Leedy, A. Green, A. Neal, S. Mou, E. Ahmadi, J. Speck, K. Chabak, N. Peixoto, and G. Jessen, "Ge- Doped β-Ga2O3 MOSFETs," IEEE Electron Device Lett. 38 (6), 775 (2017).A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, "High-quality β-Ga2O3 single crystals grown by edge- defined film-fed growth," Jpn. J. Appl. Phys. 55 (12), 1202A2 (2016). A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, "3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped β-Ga2O3 MOSFETs," IEEE Electron Device Lett. 37 (7), 902 (2016).Y. Lv, X. Zhou, S. Long, S. Liang, X. Song, X. Zhou, H. Dong, Y. Wang, Z. Feng, and S. Cai, "Lateral source field-plated β-Ga2O3 MOSFET with recorded breakdown voltage of 2360 V and low specific on-resistance of 560 mΩ·cm2," Semicond. Sci. Technol. 34 (11) (2019).J.-H. Park, R. McClintock, A. Jaud, A. Dehzangi, and M. Razeghi, "MOCVD grown β-Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire," Appl. Phys. Express 12 (9) (2019).M. J. Tadjer, F. Alema, A. Osinsky, M. A. Mastro, N. Nepal, J. M. Woodward, R. L. Myers-Ward, E. R. Glaser, J. A. Freitas, A. G. Jacobs, J. C. Gallagher, A. L. Mock, D. J. Pennachio, J. Hajzus, M. Ebrish, T. J. Anderson, K. D. Hobart, J. K. Hite, and C. R. Eddy Jr, "Characterization of β-Ga2O3 homoepitaxial films and MOSFETs grown by MOCVD at high growth rates," J. Phys. D: Appl. Phys. 54 (3) (2020).Z. Jin, Y. Liu, N. Xia, X. Guo, Z. Hong, H. Zhang, and D. Yang, "Wet etching in β-Ga2O3 bulk single crystals," CrystEngComm 24 (6), 1127 (2022).H. Okumura and T. Tanaka, "Dry and wet etching for β-Ga2O3 Schottky barrier diodes with mesa termination," Jpn. J. Appl. Phys. 58 (12), 120902 (2019).O. Shilova, "Spin-on glass films for semiconductor technology," Surf. Coat. Int. 86 (B3), 195 (2003).B. J. Baliga, "The pinch rectifier: A low-forward-drop high-speed power diode," IEEE Electron Device Lett. 5 (6), 194 (1984).B. J. Baliga, "Analysis of a high-voltage merged p-i-n/Schottky (MPS) rectifier," IEEE Electron Device Lett. 8 (9), 407 (1987).T. Hayashida, T. Nanjo, A. Furukawa, and M. Yamamuka, "Vertical GaN merged PiN Schottky diode with a breakdown voltage of 2 kV," Appl. Phys. Express 10 (6) (2017).W. Li, K. Nomoto, M. Pilla, M. Pan, X. Gao, D. Jena, and H. G. Xing, "Design and Realization of GaN Trench Junction-Barrier-Schottky- Diodes," IEEE Trans. Electron Devices 64 (4), 1635 (2017).Y. Lv, Y. Wang, X. Fu, S. Dun, Z. Sun, H. Liu, X. Zhou, X. Song, K. Dang, S. Liang, J. Zhang, H. Zhou, Z. Feng, S. Cai, and Y. Hao, "Demonstration of β-Ga2O3 Junction Barrier Schottky Diodes With a Baliga's Figure of Merit of 0.85 GW/cm2 or a 5A/700V Handling Capabilities," IEEE Trans. Power Electron. 36 (6), 6179 (2021).K. D. Chabak, J. P. McCandless, N. A. Moser, A. J. Green, K. Mahalingam, A. Crespo, N. Hendricks, B. M. Howe, S. E. Tetlak, K. Leedy, R. C. Fitch, D. Wakimoto, K. Sasaki, A. Kuramata, and G. H. Jessen, "Recessed-Gate Enhancement-Mode β-Ga2O3 MOSFETs," IEEE Electron Device Lett. 39 (1), 67 (2018).Z. Feng, X. Tian, Z. Li, Z. Hu, Y. Zhang, X. Kang, J. Ning, Y. Zhang, C. Zhang, Q. Feng, H. Zhou, J. Zhang, and Y. Hao, "Normally-Off-β- Ga2O3 Power MOSFET With Ferroelectric Charge Storage Gate Stack Structure," IEEE Electron Device Lett. 41 (3), 333 (2020).W. Lei, K. Dang, H. Zhou, J. Zhang, C. Wang, Q. Xin, S. Alghamdi, Z. Liu, Q. Feng, R. Sun, C. Zhang, and Y. Hao, "Proposal and Simulation of Ga2O3 MOSFET With PN Heterojunction Structure for High- Performance E-Mode Operation," IEEE Trans. Electron Devices 69 (7), 3617 (2022).C. Wang, H. Gong, W. Lei, Y. Cai, Z. Hu, S. Xu, Z. Liu, Q. Feng, H. Zhou, J. Ye, J. Zhang, R. Zhang, and Y. Hao, "Demonstration of the p- NiOx/n-Ga2O3 Heterojunction Gate FETs and Diodes With BV2/Ron,spFigures of Merit of 0.39 GW/cm2 and 1.38 GW/cm2," IEEE Electron Device Lett. 42 (4), 485 (2021).Z. Hu, H. Zhou, Q. Feng, J. Zhang, C. Zhang, K. Dang, Y. Cai, Z. Feng, Y. Gao, X. Kang, and Y. Hao, "Field-Plated Lateral β-Ga2O3 Schottky Barrier Diode with High Reverse Blocking Voltage of More Than 3 kV and High DC Power Figure-of-Merit of 500 MW/cm2," IEEE Electron Device Lett. (2018).Y. Yao, R. Gangireddy, J. Kim, K. K. Das, R. F. Davis, and L. M. Porter, "Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 35 (3), 03D113 (2017).H. Zhou, Q. Feng, J. Ning, C. Zhang, P. Ma, Y. Hao, Q. Yan, J. Zhang, Y. Lv, Z. Liu, Y. Zhang, K. Dang, P. Dong, and Z. Feng, "High- Performance Vertical β-Ga2O3 Schottky Barrier Diode with Implanted Edge Termination," IEEE Electron Device Lett. 40 (11), 1788 (2019). M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi, "Temperature-dependent capacitance- voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy," Appl. Phys. Lett. 108 (13), 1 (2016).H. Zhou, S. Alghamdi, M. Si, G. Qiu, and P. D. Ye, "Al2O3/β-Ga2O3 (- 201) Interface Improvement Through Piranha Pretreatment andPostdeposition Annealing," IEEE Electron Device Lett. 37 (11), 1411 (2016).R. Lingaparthi, Q. T. Thieu, K. Koshi, D. Wakimoto, K. Sasaki, and A. Kuramata, "Surface states on (001) oriented β-Ga2O3 epilayers, their origin, and their effect on the electrical properties of Schottky barrier diodes," Appl. Phys. Lett. 116 (9) (2020).F. Roccaforte, F. Giannazzo, F. Iucolano, J. Eriksson, M. H. Weng, and V. Raineri, "Surface and interface issues in wide band gap semiconductor electronics," Appl. Surf. Sci. 256 (19), 5727 (2010).R. T. Tung, "Recent advances in Schottky barrier concepts," Materials Science and Engineering: R: Reports (2001).W. Li, D. Saraswat, Y. Long, K. Nomoto, D. Jena, and H. G. Xing, "Near-ideal reverse leakage current and practical maximum electric field in β-Ga2O3 Schottky barrier diodes," Appl. Phys. Lett. 116 (19), 192101 (2020).H. Y. Yu, C. Ren, Y. Yee-Chia, J. F. Kang, X. P. Wang, H. H. H. Ma, L. Ming-Fu, D. S. H. Chan, and D. Kwong, "Fermi pinning-induced thermal instability of metal-gate work functions," IEEE Electron Device Lett. 25 (5), 337 (2004).C. Hou, R. M. Gazoni, R. J. Reeves, and M. W. Allen, "Direct comparison of plain and oxidized metal Schottky contacts on β-Ga2O3," Appl. Phys. Lett. 114 (3), 1 (2019).C. Hou, R. M. Gazoni, R. J. Reeves, and M. W. Allen, "Oxidized Metal Schottky Contacts on (010) β-Ga2O3," IEEE Electron Device Lett. 40 (2), 337 (2019).J. Yang, Z. Sparks, F. Ren, S. J. Pearton, and M. Tadjer, "Effect of surface treatments on electrical properties of β-Ga2O3," Journal of Vacuum Science & Technology B 36 (6), 061201 (2018).K. Hattori and Y. Izumi, "The electrical characteristics of degenerate InP Schottky diodes with an interfacial layer," J. Appl. Phys. 53 (10), 6906 (1982).T. H. Hung, K. Sasaki, A. Kuramata, D. N. Nath, P. Sung Park, C. Polchinski, and S. Rajan, "Energy band line-up of atomic layer deposited Al2O3 on β-Ga2O3," Appl. Phys. Lett. 104 (16), 2012 (2014). T. Kamimura, K. Sasaki, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, and M. Higashiwaki, "Band alignment and electrical properties of Al2O3/ β-Ga2O3 heterojunctions," Appl. Phys. Lett. 104 (19), 2 (2014).B. Shin, J. R. Weber, R. D. Long, P. K. Hurley, C. G. Van De Walle, and P. C. McIntyre, "Origin and passivation of fixed charge in atomic layer deposited aluminum oxide gate insulators on chemically treated InGaAs substrates," Appl. Phys. Lett. 96 (15), 4 (2010).A. Jayawardena, R. P. Ramamurthy, A. C. Ahyi, D. Morisette, and S. Dhar, "Interface trapping in (-201) β-Ga2O3 MOS capacitors with deposited dielectrics," Appl. Phys. Lett. 112 (19), 1 (2018).M. A. Bhuiyan, H. Zhou, R. Jiang, E. X. Zhang, D. M. Fleetwood, P. D. Ye, and T. P. Ma, "Charge Trapping in Al2O3/β-Ga2O3-Based MOS Capacitors," IEEE Electron Device Lett. 39 (7), 1022 (2018).K. P. Cheung, "On the 60 mV/dec @300 K limit for MOSFET subthreshold swing," Proceedings of 2010 International Symposium on VLSI Technology, System and Application, VLSI-TSA 2010 4, 72 (2010).N. Morosawa, Y. Ohshima, M. Morooka, T. Arai, and T. Sasaoka, "Self- aligned top-gate oxide thin-film transistor formed by aluminum reaction method," Jpn. J. Appl. Phys. 50 (9 PART 1) (2011).Y. Shao, X. Zhou, H. Yang, B. Chang, T. Liang, Y. Wang, and S. Zhang, "Homo-Junction Bottom-Gate Amorphous In-Ga-Zn-O TFTs with Metal-Induced Source/Drain Regions," IEEE J. Electron Devices Soc. 7 (August 2018), 46 (2019).L. Dong, R. Jia, B. Xin, B. Peng, and Y. Zhang, "Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3," Sci. Rep. 7 (1), 40160 (2017).J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van de Walle, "Oxygen vacancies and donor impurities in β-Ga2O3," Appl. Phys. Lett. 97 (14), 142106 (2010).D. K. Schroder, in Semiconductor Material and Device Characterization (2005), pp. 127.M. Ravinandan, P. K. Rao, and V. Rajagopal Reddy, "Analysis of the current–voltage characteristics of the Pd/Au Schottky structure on n- type GaN in a wide temperature range," Semicond. Sci. Technol. 24 (3), 035004 (2009).S. Chand and J. Kumar, "Effects of barrier height distribution on the behavior of a Schottky diode," J. Appl. Phys. 82 (10), 5005 (1997).J. H. Werner and H. H. Güttler, "Barrier inhomogeneities at Schottky contacts," J. Appl. Phys. 69 (3), 1522 (1991).Y. Son and R. L. Peterson, "The effects of localized tail states on charge transport mechanisms in amorphous zinc tin oxide Schottky diodes," Semicond. Sci. Technol. 32 (12) (2017).T.-H. Yang, H. Fu, H. Chen, X. Huang, J. Montes, I. Baranowski, K. Fu, and Y. Zhao, "Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates," J. Semicond. 40 (1), 012801 (2019).D. Lee, J. W. Park, N. K. Cho, J. Lee, and Y. S. Kim, "Verification of Charge Transfer in Metal-Insulator-Oxide Semiconductor Diodes via Defect Engineering of Insulator," Sci. Rep. 9 (1), 1 (2019).J. Lee, K. Yoon, K. H. Lim, J. W. Park, D. Lee, N. K. Cho, and Y. S. Kim, "Vertical Transport Control of Electrical Charge Carriers in Insulator/Oxide Semiconductor Hetero-structure," Sci. Rep. 8 (1), 1 (2018).H. Kim, S. Kyoung, T. Kang, J. Y. Kwon, K. H. Kim, and Y. S. Rim, "Effective surface diffusion of nickel on single crystal β-Ga2O3 for Schottky barrier modulation and high thermal stability," J. Mater. Chem. C 7 (35), 10953 (2019).E. H. Rhoderick, "Metal-semiconductor contacts," IEE Proceedings I Solid State and Electron Devices 129 (1), 1 (1982).V. Rajagopal Reddy, V. Janardhanam, C. H. Leem, and C. J. Choi, "Electrical properties and the double Gaussian distribution of inhomogeneous barrier heights in Se/n-GaN Schottky barrier diode," Superlattices Microstruct. 67, 242 (2014).M. Kasu, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oshima, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, "Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes," Jpn. J. Appl. Phys. 55 (12), 1202BB (2016).J. Yang, F. Ren, M. Tadjer, S. J. Pearton, and A. Kuramata, "2300 V Reverse Breakdown Voltage Ga2O3 Schottky Rectifiers," ECS Journal of Solid State Science and Technology 7 (5), Q92 (2018).M. I. Pintor-Monroy, B. L. Murillo-Borjas, M. Catalano, and M. A. Quevedo-Lopez, "Controlling Carrier Type and Concentration in NiO Films To Enable in Situ PN Homojunctions," ACS Appl Mater Interfaces 11 (30), 27048 (2019).Z. Wang, P. K. Nayak, J. A. Caraveo-Frescas, and H. N. Alshareef, "Recent Developments in p-Type Oxide Semiconductor Materials and Devices," Adv. Mater. 28 (20), 3831 (2016).L. Ai, G. Fang, L. Yuan, N. Liu, M. Wang, C. Li, Q. Zhang, J. Li, and X. Zhao, "Influence of substrate temperature on electrical and optical properties of p-type semitransparent conductive nickel oxide thin films deposited by radio frequency sputtering," Appl. Surf. Sci. 254 (8), 2401 (2008).M. Fingerle, S. Tengeler, W. Calvet, W. Jaegermann, and T. Mayer, "Sputtered Nickel Oxide Thin Films on n-Si(100)/SiO2 Surfaces for Photo-Electrochemical Oxygen Evolution Reaction (OER): Impact of Deposition Temperature on OER Performance and on Composition before and after OER," J. Electrochem. Soc. 167 (13) (2020).H. Sato, T. Minami, S. Takata, and T. Yamada, "Transparent conducting p-type NiO thin films prepared by magnetron sputtering," Thin Solid Films 236 (1), 27 (1993).Q. Yan, H. Gong, J. Zhang, J. Ye, H. Zhou, Z. Liu, S. Xu, C. Wang, Z. Hu, Q. Feng, J. Ning, C. Zhang, P. Ma, R. Zhang, and Y. Hao, "β-Ga2O3 hetero-junction barrier Schottky diode with reverse leakage current modulation and BV2/Ron,sp value of 0.93 GW/cm2," Appl. Phys. Lett. 118 (12), 122102 (2021).Z. Wang, H. Gong, C. Meng, X. Yu, X. Sun, C. Zhang, X. Ji, F. Ren, S. Gu, Y. Zheng, R. Zhang, and J. Ye, "Majority and Minority Carrier Traps in NiO/β-Ga2O3 p+-n Heterojunction Diode," IEEE Trans. Electron Devices 69 (3), 981 (2022).X. Lu, X. Zhou, H. Jiang, K. W. Ng, Z. Chen, Y. Pei, K. M. Lau, and G. Wang, "1-kV Sputtered p-NiO/n-Ga2O3 Heterojunction Diodes With an Ultra-Low Leakage Current Below 1μA/cm2," IEEE Electron Device Lett. 41 (3), 449 (2020).Y. Jiang, W. Sung, X. Song, H. Ke, S. Liu, B. J. Baliga, A. Q. Huang, and E. V. Brunt, in 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2016), pp. 43.D. Garrido-Diez and I. Baraia, in 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM) (2017), pp. 1.H. Niwa, J. Suda, and T. Kimoto, "Ultrahigh-Voltage SiC MPS Diodes With Hybrid Unipolar/Bipolar Operation," IEEE Trans. Electron Devices 64 (3), 874 (2017).X. She, A. Q. Huang, L. Ó, and B. Ozpineci, "Review of Silicon Carbide Power Devices and Their Applications," IEEE Trans. Ind. Electron. 64 (10), 8193 (2017).R. N. Gupta, W. G. Min, and T. P. Chow, "A novel planarized, silicon trench sidewall oxide-merged p-i-n Schottky (TSOX-MPS) rectifier," IEEE Electron Device Lett. 20 (12), 627 (1999).J. Hu, Y. Zhang, M. Sun, D. Piedra, N. Chowdhury, and T. Palacios, "Materials and processing issues in vertical GaN power electronics," Mater. Sci. Semicond. Process. 78, 75 (2018).M. Kitao, K. Izawa, K. Urabe, T. Komatsu, S. Kuwano, and S. Yamada, "Preparation and Electrochromic Properties of RF-SputteredNiOxFilms Prepared inAr/O2/H2Atmosphere," Jpn. J. Appl. Phys. 33 (Part 1, No. 12A), 6656 (1994).H. Gong, X. Chen, Y. Xu, Y. Chen, F. Ren, B. Liu, S. Gu, R. Zhang, and J. Ye, "Band Alignment and Interface Recombination in NiO/β- Ga2O3 Type-II p-n Heterojunctions," IEEE Trans. Electron Devices 67 (8), 3341 (2020).H. Luo, X. Zhou, Z. Chen, Y. Pei, X. Lu, and G. Wang, "Fabrication and Characterization of High-Voltage NiO/β-Ga2O3 Heterojunction Power Diodes," IEEE Trans. Electron Devices 68 (8), 3991 (2021).Y. Kokubun, S. Kubo, and S. Nakagomi, "All-oxide p–n heterojunction diodes comprising p-type NiO and n-type β-Ga2O3," Appl. Phys. Express 9 (9) (2016).Y. Wang, C. Wu, D. Guo, P. Li, S. Wang, A. Liu, C. Li, F. Wu, and W. Tang, "All-Oxide NiO/Ga2O3 p–n Junction for Self-Powered UV Photodetector," ACS Appl. Electron. Mater. 2 (7), 2032 (2020).T. J. Flack, B. N. Pushpakaran, and S. B. Bayne, "GaN Technology for Power Electronic Applications: A Review," J. Electron. Mater. 45 (6), 2673 (2016).D. Maier, M. Alomari, N. Grandjean, J. F. Carlin, M. A. Diforte-Poisson, C. Dua, A. Chuvilin, D. Troadec, C. Gaquière, U. Kaiser, S. L. Delage, and E. Kohn, "Testing the Temperature Limits of GaN-Based HEMT Devices," IEEE Trans. Device Mater. Reliab. 10 (4), 427 (2010).B. N. Pushpakaran, A. S. Subburaj, and S. B. Bayne, "Commercial GaN- Based Power Electronic Systems: A Review," J. Electron. Mater. 49 (11), 6247 (2020).A. Nandi, K. S. Rana, and A. Bag, "Design and Analysis of P-GaN/N- Ga2O3Based Junction Barrier Schottky Diodes," IEEE Trans. Electron Devices 68 (12), 6052 (2021).F. Hishiki, T. Akiyama, T. Kawamura, and T. Ito, "Structures and stability of GaN/Ga2O3 interfaces: a first-principles study," Jpn. J. Appl. Phys. 61 (6) (2022).M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, "High- quality III-nitride films on conductive, transparent (-201)-oriented β- Ga2O3 using a GaN buffer layer," Sci. Rep. 6 (1), 29747 (2016).J. Montes, C. Yang, H. Fu, T.-H. Yang, K. Fu, H. Chen, J. Zhou, X. Huang, and Y. Zhao, "Demonstration of mechanically exfoliated β- Ga2O3/GaN p-n heterojunction," Appl. Phys. Lett. 114 (16) (2019).S. Ghosh, H. Srivastava, P. N. Rao, M. Nand, P. Tiwari, A. K. Srivastava, S. N. Jha, S. K. Rai, S. D. Singh, and T. Ganguli, "Investigations on epitaxy and lattice distortion of sputter deposited β-Ga2O3 layers on GaN templates," Semicond. Sci. Technol. 35 (8) (2020).T. Zhang, Y. Li, Y. Zhang, Q. Feng, J. Ning, C. Zhang, J. Zhang, and Y. Hao, "Investigation of β-Ga2O3 thin films grown on epi- GaN/sapphire(0001) substrates by low pressure MOCVD," J. Alloys Compd. 859 (2021).G. Huang, C. Chu, L. Guo, Z. Liu, K. Jiang, Y. Zhang, X. Sun, Z. H. Zhang, and D. Li, "Hybrid metal/Ga2O3/GaN ultraviolet detector for obtaining low dark current and high responsivity," Opt Lett 47 (6), 1561 (2022).Z. Liu, C. Chu, B. Wang, G. Huang, K. Jiang, Y. Zhang, X. Sun, Z.-H. Zhang, and D. Li, "Hybrid Ga2O3/AlGaN/GaN Ultraviolet Detector With Gate Metal in the Grooved AlGaN Layer for Obtaining Low Dark Current and Large Detectivity," IEEE Trans. Electron Devices 69 (11), 6166 (2022).P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, and W. Tang, "Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector," J. Mater. Chem. C 5 (40), 10562 (2017).D. Guo, Y. Su, H. Shi, P. Li, N. Zhao, J. Ye, S. Wang, A. Liu, Z. Chen, C. Li, and W. Tang, "Self-Powered Ultraviolet Photodetector with Superhigh Photoresponsivity (3.05 A/W) Based on the GaN/Sn:Ga2O3 pn Junction," ACS Nano 12 (12), 12827 (2018).Y. Xu, C. Zhang, P. Yan, Z. Li, Z. Feng, Y. Zhang, D. Chen, W. Zhu, Q. Feng, S. Xu, J. Zhang, and Y. Hao, "Depletion-Mode β-Ga2O3 MOSFETs Grown by Nonvacuum, Cost-Effective Mist-CVD Method on Fe-Doped GaN Substrates," IEEE Trans. Electron Devices 69 (3), 1196 (2022).V. I. Nikolaev, S. I. Stepanov, A. I. Pechnikov, S. V. Shapenkov, M. P. Scheglov, A. V. Chikiryaka, and O. F. Vyvenko, "HVPE Growth and Characterization of ε-Ga2O3 Films on Various Substrates," ECS Journal of Solid State Science and Technology 9 (4) (2020).P.-F. Chi, F.-W. Lin, M.-L. Lee, and J.-K. Sheu, "High-Responsivity Solar-Blind Photodetectors Formed by Ga2O3/p-GaN Bipolar Heterojunctions," ACS Photonics 9 (3), 1002 (2022).Y. Kim, M.-K. Kim, K. H. Baik, and S. Jang, "Low-Resistance Ti/Au Ohmic Contact on (001) Plane Ga2O3 Crystal," ECS Journal of Solid State Science and Technology 11 (4), 045003 (2022).T. Hirao, H. Onose, K. Yasui, and M. Mori, "Edge Termination With Enhanced Field-Limiting Rings Insensitive to Surface Charge for High- Voltage SiC Power Devices," IEEE Trans. Electron Devices 67 (7), 2850 (2020).W. Li, Z. Hu, K. Nomoto, Z. Zhang, J.-Y. Hsu, Q. T. Thieu, K. Sasaki, A. Kuramata, D. Jena, and H. G. Xing, "1230 V β-Ga2O3 trench Schottky barrier diodes with an ultra-low leakage current of <1 μA/cm2," Appl. Phys. Lett. 113 (20), 202101 (2018).H. Xu, N. Ren, J. Wu, Z. Zhu, Q. Guo, and K. Sheng, "The Impact of Process Conditions on Surge Current Capability of 1.2 kV SiC JBS and MPS Diodes," Materials (Basel) 14 (3) (2021).J. P. Donnelly and A. G. Milnes, "The capacitance of p-n heterojunctions including the effects of interface states," IEEE Trans. Electron Devices 14 (2), 63 (1967).R. Padma, B. P. Lakshmi, and V. R. Reddy, "Capacitance–frequency (C–f) and conductance–frequency (G–f) characteristics of Ir/n-InGaN Schottky diode as a function of temperature," Superlattices Microstruct. 60, 358 (2013).S. Russo and A. D. Carlo, "Influence of the Source–Gate Distance on the AlGaN/GaN HEMT Performance," IEEE Trans. Electron Devices 54 (5), 1071 (2007).E. Schibli and A. G. Milnes, "Effects of deep impurities on n+p junction reverse-biased small-signal capacitance," Solid-State Electron. 11 (3), 323 (1968).G. I. Roberts and C. R. Crowell, "Capacitance Energy Level Spectroscopy of Deep‐Lying Semiconductor Impurities Using Schottky Barriers," J. Appl. Phys. 41 (4), 1767 (1970).H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. H. Jeong, K. I. Kim, and T.-Y. Seong, "Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes," Appl. Phys. Lett. 86 (18) (2005).M. He, W. C. Cheng, F. Zeng, Z. Qiao, Y. C. Chien, Y. Jiang, W. Li, L. Jiang, Q. Wang, K. W. Ang, and H. Yu, "Improvement of β-Ga2O3 MIS- SBD Interface Using Al-Reacted Interfacial Layer," IEEE Trans. Electron Devices 68 (7), 3314 (2021).Z. Zhang, E. Farzana, A. R. Arehart, and S. A. Ringel, "Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy," Appl. Phys. Lett. 108 (5) (2016).J. Montes, C. Kopas, H. Chen, X. Huang, T.-h. Yang, K. Fu, C. Yang, J. Zhou, X. Qi, H. Fu, and Y. Zhao, "Deep level transient spectroscopy investigation of ultra-wide bandgap (2̄01) and (001) β-Ga2O3," J. Appl. Phys. 128 (20) (2020).J. Zhang, S. Han, M. Cui, X. Xu, W. Li, H. Xu, C. Jin, M. Gu, L. Chen, and K. H. L. Zhang, "Fabrication and Interfacial Electronic Structure of Wide Bandgap NiO and Ga2O3 p–n Heterojunction," ACS Appl. Electron. Mater. 2 (2), 456 (2020).H. H. Gong, X. H. Chen, Y. Xu, F. F. Ren, S. L. Gu, and J. D. Ye, "A 1.86-kV double-layered NiO/β-Ga2O3 vertical p–n heterojunction diode," Appl. Phys. Lett. 117 (2) (2020).W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu, and G. Zhang, "Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X- ray photoelectron spectroscopy," Nanoscale Res. Lett. 7 (1), 562 (2012). R. O'Donoghue, J. Rechmann, M. Aghaee, D. Rogalla, H.-W. Becker, M. Creatore, A. D. Wieck, and A. Devi, "Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition," Dalton Trans. 46 (47), 16551 (2017).W. Chen, X. Xu, M. Li, S. Kuang, K. H. L. Zhang, and Q. Cheng, "A Fast Self‐Powered Solar‐Blind Ultraviolet Photodetector Realized by Ga2O3/GaN PIN Heterojunction with a Fully Depleted Active Region," Adv. Opt. Mater. 11 (8) (2023).H. Gong, Z. Wang, X. Yu, F. Ren, Y. Yang, Y. Lv, Z. Feng, S. Gu, R. Zhang, Y. Zheng, and J. Ye, "Field-Plated NiO/Ga2O3 p-n Heterojunction Power Diodes With High-Temperature Thermal Stability and Near Unity Ideality Factors," IEEE J. Electron Devices Soc. 9, 1166 (2021).J. D. Romero, M. Khan, H. Fatemi, and J. Turlo, "Outgassing behavior of spin-on-glass (SOG)," J. Mater. Res. 6 (9), 1996 (1991).K. D. Chabak, K. D. Leedy, A. J. Green, S. Mou, A. T. Neal, T. Asel, E. R. Heller, N. S. Hendricks, K. Liddy, A. Crespo, N. C. Miller, M. T. Lindquist, N. A. Moser, R. C. Fitch, D. E. Walker, D. L. Dorsey, and G. H. Jessen, "Lateral β-Ga2O3 field effect transistors," Semicond. Sci. Technol. 35 (1) (2020).M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, "Enhancement-mode Ga2O3 MOSFETs with Si-ion- implanted source and drain," Appl. Phys. Express 10 (4) (2017).H.-C. Huang, Z. Ren, A. F. M. Anhar Uddin Bhuiyan, Z. Feng, Z. Yang, X. Luo, A. Q. Huang, A. Green, K. Chabak, H. Zhao, and X. Li, "β- Ga2O3 FinFETs with ultra-low hysteresis by plasma-free metal-assisted chemical etching," Appl. Phys. Lett. 121 (5) (2022).H.-W. You and W.-J. Cho, "Charge trapping properties of the HfO2 layer with various thicknesses for charge trap flash memory applications," Appl. Phys. Lett. 96 (9) (2010).Y. Cai, Y. Zhang, Y. Liang, I. Z. Mitrovic, H. Wen, W. Liu, and C. Zhao, "Low ON-State Resistance Normally-OFF AlGaN/GaN MIS-HEMTs With Partially Recessed Gate and ZrOx Charge Trapping Layer," IEEE Trans. Electron Devices 68 (9), 4310 (2021).T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, in 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407) (2003), pp. 27.J. Li, H. Zhang, Y. Ding, J. Li, S. Wang, D. W. Zhang, and P. Zhou, "A non-volatile AND gate based on Al2O3/HfO2/Al2O3 charge-trap stack for in-situ storage applications," Science Bulletin 64 (20), 1518 (2019). D. Spassov, A. Paskaleva, T. A. Krajewski, E. Guziewicz, G. Luka, and T. Ivanov, "Al2O3/HfO2 Multilayer High-k Dielectric Stacks for Charge Trapping Flash Memories," physica status solidi (a) 215 (16) (2018). Z. Z. Hou, H. X. Yin, and Z. H. Wu, in 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) (2018), pp. 1.Y. S. Song, T. Jang, K. K. Min, M.-H. Baek, J. Yu, Y. Kim, J.-H. Lee, and B.-G. Park, "Tunneling oxide engineering for improving retention in nonvolatile charge-trapping memory with TaN/Al2O3/HfO2/SiO2/Al2O3/SiO2/Si structure," Jpn. J. Appl. Phys. 59 (6) (2020).D. Biswas, C. Joishi, J. Biswas, P. Tiwari, and S. Lodha, "Charge trap layer enabled positive tunable Vfb in β-Ga2O3 gate stacks for enhancement mode transistors," Appl. Phys. Lett. 117 (17) (2020).R. Degraeve, B. Kaczer, and G. Groeseneken, "Degradation and breakdown in thin oxide layers: mechanisms, models and reliability prediction," Microelectron. Reliab. 39 (10), 1445 (1999).S. J. Pearton, F. Ren, M. Tadjer, and J. Kim, "Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS," J. Appl. Phys. 124 (22), 220901 (2018).C. J. Szwejkowski, N. C. Creange, K. Sun, A. Giri, B. F. Donovan, C. Constantin, and P. E. Hopkins, "Size effects in the thermal conductivity of gallium oxide (β-Ga2O3) films grown via open-atmosphere annealing of gallium nitride," J. Appl. Phys. 117 (8), 084308 (2015).S. Inc., (Atlas User’s Manual, 2016).E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, "Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping," Appl. Phys. Lett. 92 (20), 202120 (2008).X. Huili, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. K. Mishra, "High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates," IEEE Electron Device Lett. 25 (4), 161 (2004).M. Temkin and I. Chakarov, "Computationally Efficient Model for 2D Ion Implantation Simulation," MRS Online Proceedings Library 490 (1), 27 (1997).S. Ohira and N. Arai, "Wet chemical etching behavior of β-Ga2O3 single crystal," physica status solidi c 5 (9), 3116 (2008).C. Joishi, Z. Xia, J. S. Jamison, S. H. Sohel, R. C. Myers, S. Lodha, and S. Rajan, "Deep-Recessed β-Ga2O3 Delta-Doped Field-Effect Transistors With In Situ Epitaxial Passivation," IEEE Trans. Electron Devices 67 (11), 4813 (2020).J. Yang, M. Xian, P. Carey, C. Fares, J. Partain, F. Ren, M. Tadjer, E. Anber, D. Foley, A. Lang, J. Hart, J. Nathaniel, M. L. Taheri, S. J. Pearton, and A. Kuramata, "Vertical geometry 33.2 A, 4.8 MW cm2 Ga2O3 field-plated Schottky rectifier arrays," Appl. Phys. Lett. 114 (23), 232106 (2019).S. Yang, S. Liu, Y. Lu, C. Liu, and K. J. Chen, "AC-Capacitance Techniques for Interface Trap Analysis in GaN-Based Buried-Channel MIS-HEMTs," IEEE Trans. Electron Devices 62 (6), 1870 (2015).S. Yang, Z. Tang, K. Y. Wong, Y. S. Lin, Y. Lu, S. Huang, and K. J. Chen, in 2013 IEEE International Electron Devices Meeting (2013), pp. 6.3.1.H. Bohuslavskyi, A. G. M. Jansen, S. Barraud, V. Barral, M. Casse, L. Le Guevel, X. Jehl, L. Hutin, B. Bertrand, G. Billiot, G. Pillonnet, F. Arnaud, P. Galy, S. De Franceschi, M. Vinet, and M. Sanquer, "Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening," IEEE Electron Device Lett. 40 (5), 784 (2019).Y. Wu, C.-Y. Chen, and J. A. del Alamo, "Activation energy of drain- current degradation in GaN HEMTs under high-power DC stress," Microelectron. Reliab. 54 (12), 2668 (2014).N. Kaushik, D. M. A. Mackenzie, K. Thakar, N. Goyal, B. Mukherjee, P. Boggild, D. H. Petersen, and S. Lodha, "Reversible hysteresis inversion in MoS2 field effect transistors," npj 2D Mater. Appl. 1 (1) (2017).O. Katz, Y. Roichman, G. Bahir, N. Tessler, and J. Salzman, "Charge carrier mobility in field effect transistors: analysis of capacitance– conductance measurements," Semicond. Sci. Technol. 20 (1), 90 (2005). C. Hu, Modern semiconductor devices for integrated circuits. (Prentice Hall Upper Saddle River, NJ, 2010).X. Huang, C. Wu, H. Lu, F. Ren, Q. Xu, H. Ou, R. Zhang, and Y. Zheng, "Electrical instability of amorphous indium-gallium-zinc oxide thin film transistors under monochromatic light illumination," Appl. Phys. Lett. 100 (24) (2012).E. Fabris, C. De Santi, A. Caria, W. Li, K. Nomoto, Z. Hu, D. Jena, H. G. Xing, G. Meneghesso, E. Zanoni, and M. Meneghini, "Trapping and Detrapping Mechanisms in β-Ga2O3 Vertical FinFETs Investigated by Electro-Optical Measurements," IEEE Trans. Electron Devices 67 (10), 3954 (2020).C.-C. Chao and M. H. White, "Characterization of charge injection and trapping in scaled SONOS/MONOS memory devices," Solid-State Electron. 30 (3), 307 (1987).C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, "Capacitance– Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3/AlGaN Interface," Jpn. J. Appl. Phys. 50 (2), 021001 (2011).I. Rossetto, M. Meneghini, O. Hilt, E. Bahat-Treidel, C. De Santi, S. Dalcanale, J. Wuerfl, E. Zanoni, and G. Meneghesso, "Time-Dependent Failure of GaN-on-Si Power HEMTs With p-GaN Gate," IEEE Trans. Electron Devices 63 (6), 2334 (2016).A. N. Tallarico, S. Stoffels, N. Posthuma, B. Bakeroot, S. Decoutere, E. Sangiorgi, and C. Fiegna, "Gate Reliability of p-GaN HEMT With Gate Metal Retraction," IEEE Trans. Electron Devices 66 (11), 4829 (2019). T. L. Wu, D. Marcon, B. D. Jaeger, M. V. Hove, B. Bakeroot, S. Stoffels, G. Groeseneken, S. Decoutere, and R. Roelofs, in 2015 IEEE International Reliability Physics Symposium (2015), pp. 6C.4.1.S. Ohira, M. Yoshioka, T. Sugawara, K. Nakajima, and T. Shishido, "Fabrication of hexagonal GaN on the surface of β-Ga2O3 single crystal by nitridation with NH3," Thin Solid Films 496 (1), 53 (2006).W. Li, K. Nomoto, Z. Hu, D. Jena, and H. G. Xing, "Fin-channel orientation dependence of forward conduction in kV-class Ga2O3 trench Schottky barrier diodes," Appl. Phys. Express 12 (6) (2019).K. Sasaki, D. Wakimoto, Q. T. Thieu, Y. Koishikawa, A. Kuramata, M. Higashiwaki, and S. Yamakoshi, "First Demonstration of Ga2O3 Trench MOS-Type Schottky Barrier Diodes," IEEE Electron Device Lett. 38 (6), 783 (2017).Z. Zheng, L. Zhang, W. Song, S. Feng, H. Xu, J. Sun, S. Yang, T. Chen, J. Wei, and K. J. Chen, "Gallium nitride-based complementary logic integrated circuits," Nat. Electron. 4 (8), 595 (2021).K. J. Chen, J. Wei, G. Tang, H. Xu, Z. Zheng, L. Zhang, and W. Song, in 2020 IEEE International Electron Devices Meeting (IEDM) (2020), pp. 27.1.1. |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/719126 |
专题 | 南方科技大学 南方科技大学-香港科技大学深港微电子学院筹建办公室 |
推荐引用方式 GB/T 7714 |
He MH. EXPLORATION OF GALLIUM OXIDE DEVICES FOR POWER APPLICATIONS[D]. 新加坡. 新加坡国立大学,2023.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11955010-何明浩-南方科技大学-(6312KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[何明浩]的文章 |
百度学术 |
百度学术中相似的文章 |
[何明浩]的文章 |
必应学术 |
必应学术中相似的文章 |
[何明浩]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论