中文版 | English
题名

Multi-objective Feature Attribution Explanation For Explainable Machine Learning

作者
通讯作者Xin Yao
发表日期
2024-02-23
DOI
发表期刊
卷号4期号:1页码:1-32
摘要

The feature attribution-based explanation (FAE) methods, which indicate how much each input feature contributes to the model’s output for a given data point, are one of the most popular categories of explainable machine learning techniques. Although various metrics have been proposed to evaluate the explanation quality, no single metric could capture different aspects of the explanations. Different conclusions might be drawn using different metrics. Moreover, during the processes of generating explanations, existing FAE methods either do not consider any evaluation metric or only consider the faithfulness of the explanation, failing to consider multiple metrics simultaneously. To address this issue, we formulate the problem of creating FAE explainable models as a multi-objective learning problem that considers multiple explanation quality metrics simultaneously. We first reveal conflicts between various explanation quality metrics, including faithfulness, sensitivity, and complexity. Then, we define the considered multi-objective explanation problem and propose a multi-objective feature attribution explanation (MOFAE) framework to address this newly defined problem. Subsequently, we instantiate the framework by simultaneously considering the explanation's faithfulness, sensitivity, and complexity. Experimental results comparing with six state-of-the-art FAE methods on eight datasets demonstrate that our method can optimize multiple conflicting metrics simultaneously and can provide explanations with higher faithfulness, lower sensitivity, and lower complexity than the compared methods. Moreover, the results have shown that our method has better diversity, i.e., it provides various explanations that achieve different trade-offs between multiple conflicting explanation quality metrics. Therefore, it can provide tailored explanations to different stakeholders based on their specific requirements.

收录类别
语种
英语
学校署名
第一 ; 通讯
来源库
人工提交
出版状态
在线出版
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/719127
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, China
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, China
3.The Advanced Cognitive Technology Lab, Huawei Technologies Co., Ltd., China
4.School of Computer Science, University of Birmingham, UK
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Ziming Wang,Changwu Huang,Yun Li,et al. Multi-objective Feature Attribution Explanation For Explainable Machine Learning[J]. ACM Transactions on Evolutionary Learning and Optimization,2024,4(1):1-32.
APA
Ziming Wang,Changwu Huang,Yun Li,&Xin Yao.(2024).Multi-objective Feature Attribution Explanation For Explainable Machine Learning.ACM Transactions on Evolutionary Learning and Optimization,4(1),1-32.
MLA
Ziming Wang,et al."Multi-objective Feature Attribution Explanation For Explainable Machine Learning".ACM Transactions on Evolutionary Learning and Optimization 4.1(2024):1-32.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Multi-objective Feat(6379KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ziming Wang]的文章
[Changwu Huang]的文章
[Yun Li]的文章
百度学术
百度学术中相似的文章
[Ziming Wang]的文章
[Changwu Huang]的文章
[Yun Li]的文章
必应学术
必应学术中相似的文章
[Ziming Wang]的文章
[Changwu Huang]的文章
[Yun Li]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Multi-objective Feature Attribution Explanation For Explainable Machine Learning.pdf
格式: Adobe PDF
文件名: Multi-objective Feature Attribution Explanation For Explainable Machine Learning.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。