中文版 | English
题名

INTERFACIAL THERMAL MANIPULATION FOR WATER-ENERGY HARVESTING

姓名
姓名拼音
ZHOU YI
学号
11955016
学位类型
博士
学位专业
Electrical and Computer Engineering
导师
何佳清
导师单位
物理系
论文答辩日期
2023-07
论文提交日期
2024-03-01
学位授予单位
新加坡国立大学
学位授予地点
新加坡
摘要

Water and energy serve as the bedrock of social stability, economic growth, and human civilization worldwide. The need for clean water and energy technologies has never been more imperative in the post-pandemic era, given the gradual recovery of economic activities and human mobilities. Converting solar thermal energy or low-grade waste heat via efficacious heat harvesting technologies promises to offer clean water and energy with minimal environmental impacts. This thesis aims to explore interfacial heat transport and underlying multiphysics in multi-material systems for advancing sustainable water-energy harvesting through multiscale thermal manipulation. First, we discuss the potential and feasibility of upcycling low-grade heat based on thermal transport theory. We investigate the controllability of inhomogeneous water distribution/evaporation and thermal transport at non-flat water-air interfaces, enabling boosted solar vaporization and thermoelectric generation, respectively. We then transform nonplanar device topologies and field inhomogeneities into thermal and electrostatic profile co-modulation at dielectric-air and droplet interfaces for weather adaptive environmental energy harvesting with a two-fold increase in output power. Moreover, we delve into the understanding of thermal field nonlinearity and decoupling of interfacial heat localization-propagation in transverse pyroelectrics, thus achieving a five-fold increment in power density for temporal heat harvesting. Additionally, we demonstrate spatial heat harvesting with technoeconomic sustainability and scalable production potential by harnessing non-unity flexible thermoelectrics and geometric heat transport. Finally, we summarize the contributions made in this thesis and suggest future research directions.

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2023-07
参考文献列表

[1] International Energy Agency. Energy Efficiency 2022. (2022).
[2] Ritchie, H. & Roser, M. Clean water and sanitation, https://ourworldindata.org/clean-water-sanitation (2021).
[3] International Energy Agency. Energy Technology Perspectives 2020. (2020).
[4] International Energy Agency. Renewables 2021-Analysis and forecasts to 2026. (2021).
[5] Tao, P. et al. Solar-driven interfacial evaporation. Nat. Energy 3, 1031-1041, (2018).
[6] Gao, M., Zhu, L., Peh, C. K. & Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energ. Environ. Sci. 12, 841-864, (2019).
[7] Alvarez, P. J. J., Chan, C. K., Elimelech, M., Halas, N. J. & Villagran, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13, 634-641, (2018).
[8] Zhu, L., Gao, M., Peh, C. K. N., Wang, X. & Ho, G. W. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energ. Mater. 8, 1702149, (2018).
[9] Gao, M., Peh, C. K., Phan, H. T., Zhu, L. & Ho, G. W. Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic au nanoflowers photothermic vaporization and triboelectric generation. Adv. Energ. Mater. 8, 1800711, (2018).
[10] Zhu, L., Ding, T., Gao, M., Peh, C. K. N. & Ho, G. W. Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation. Adv. Energ. Mater. 9, 1900250, (2019).
[11] Zhou, Y. et al. Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production. Nano Energy 77, 105102, (2020).
[12] Ding, T., Zhou, Y., Ong, W. L. & Ho, G. W. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 42, 178-191, (2021).
[13] Zhou, Y. et al. Non-planar dielectrics derived thermal and electrostatic field inhomogeneity for boosted weather-adaptive energy harvesting. Nat. Sci. Rev. n/a, nwad186, (2023).
[14] Zhou, Y. et al. Giant polarization ripple in transverse pyroelectricity. Nat. Commun. 14, 426, (2023).
[15] Zhou, Y. & Ho, G. W. Pyroelectric heat harvesting, what’s next? Next Energy 1, 100026, (2023).
[16] Zhou, Y. et al. Physics-guided co-designing flexible thermoelectrics with techno-economic sustainability for low-grade heat harvesting. Sci. Adv. 9, eadf5701, (2023).
[17] Li, Y., Li, J., Qi, M., Qiu, C.-W. & Chen, H. Diffusive nonreciprocity and thermal diode. Physical Review B 103, 014307, (2021).
[18] Xu, L. et al. Blackhole-inspired thermal trapping with graded heat-conduction metadevices. Nat. Sci. Rev. 10, nwac159, (2022).
[19] Xu, G. et al. Tunable analog thermal material. Nat. Commun. 11, 6028, (2020).
[20] Böttner, H., Chen, G. & Venkatasubramanian, R. Aspects of thin-film superlattice thermoelectric materials, devices, and applications. MRS Bull. 31, 211-217, (2006).
[21] Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634-638, (2008).
[22] Xu, Z. et al. Scalable selective absorber with quasiperiodic nanostructure for low-grade solar energy harvesting. APL Photonics 8, 020801, (2023).
[23] Chowdhury, I. et al. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4, 235-238, (2009).
[24] Shin, J. et al. High ambipolar mobility in cubic boron arsenide. Science 377, 437-440, (2022).
[25] Ni, G. et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126, (2016).
[26] Kraemer, D. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532-538, (2011).
[27] Bowen, C. R. et al. Pyroelectric materials and devices for energy harvesting applications. Energ. Environ. Sci. 7, 3836-3856, (2014).
[28] Cooper, J. Minimum detectable power of a pyroelectric thermal receiver. Rev. Sci. Instrum. 33, 92-95, (1962).
[29] Vincent Ming Hong, N. et al. in Comprehensive Energy Systems Vol. 2 Pyroelectric Materials (ed Ibrahim Dincer) Ch. 2.23, 720-759 (Elsevier, 2018).
[30] Ghasemi, H. et al. Solar steam generation by heat localization. Nat. Commun. 5, 4449, (2014).
[31] Li, X. et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. U.S.A. 113, 13953-13958, (2016).
[32] Xu, N. et al. Going beyond efficiency for solar evaporation. Nat. Water 1, 494-501, (2023).
[33] Liu, G., Chen, T., Xu, J., Li, G. & Wang, K. Solar evaporation for simultaneous steam and power generation. J. Mater. Chem. A 8, 513-531, (2020).
[34] Zhang, X. et al. Conversion of solar power to chemical energy based on carbon nanoparticle modified photo-thermoelectric generator and electrochemical water splitting system. Nano Energy 48, 481-488, (2018).
[35] Zhang, Y., Ravi, S. K. & Tan, S. C. Food-derived carbonaceous materials for solar desalination and thermo-electric power generation. Nano Energy 65, 104006, (2019).
[36] Zong, L., Li, M. & Li, C. Intensifying solar-thermal harvest of low-dimension biologic nanostructures for electric power and solar desalination. Nano Energy 50, 308-315, (2018).
[37] Ding, T. et al. Hybrid photothermal pyroelectric and thermogalvanic generator for multisituation low grade heat harvesting. Adv. Energ. Mater. 8, 1802397, (2018).
[38] Shen, Q. et al. An open thermo-electrochemical cell enabled by interfacial evaporation. J. Mater. Chem. A 7, 6514-6521, (2019).
[39] Meng, F. L. et al. Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers. Adv Funct Mater 30, 2002867, (2020).
[40] Li, X. et al. Storage and Recycling of Interfacial Solar Steam Enthalpy. Joule 2, 2477-2484, (2018).
[41] Zou, H. et al. Quantifying the triboelectric series. Nat. Commun. 10, (2019).
[42] Xiao, P. et al. Exploring interface confined water flow and evaporation enables solar-thermal-electro integration towards clean water and electricity harvest via asymmetric functionalization strategy. Nano Energy 68, (2020).
[43] Lao, J. et al. Electricity generation based on a photothermally driven Ti3C2Tx MXene nanofluidic water pump. Nano Energy 70, 104481, (2020).
[44] Xue, G. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12, 317-321, (2017).
[45] Ding, T. et al. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 27, 1700551, (2017).
[46] Li, J. et al. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy 58, 797-802, (2019).
[47] Sun, J. et al. Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy 57, 269-278, (2019).
[48] Feser, J. P. & Ravichandran, J. More power to pyroelectrics. Nat. Mater. 17, 385-386, (2018).
[49] Vullers, R. J. M., van Schaijk, R., Doms, I., Van Hoof, C. & Mertens, R. Micropower energy harvesting. Solid-State Electron. 53, 684-693, (2009).
[50] Jachalke, S. et al. How to measure the pyroelectric coefficient? Appl. Phys. Rev. 4, 021303, (2017).
[51] Li, W. et al. Improper molecular ferroelectrics with simultaneous ultrahigh pyroelectricity and figures of merit. Sci. Adv. 7, eabe3068, (2021).
[52] Wang, X. Q. et al. Nanophotonic-engineered photothermal harnessing for waste heat management and pyroelectric generation. ACS Nano 11, 10568-10574, (2017).
[53] van der Ziel, A. Solar power generation with the pyroelectric effect. J. Appl. Phys. 45, 4128-4128, (1974).
[54] Born, M. & Huang, K. in Dynamical theory of crystal lattices Vol. 1 The free energy Ch. 6, 287-288 (Oxford University Press, 1954).
[55] Szigeti, B. Temperature dependence of pyroelectricity. Phys. Rev. Lett. 35, 1532-1534, (1975).
[56] Liu, J. & Pantelides, S. T. Mechanisms of Pyroelectricity in Three- and Two-Dimensional Materials. Phys. Rev. Lett. 120, 207602, (2018).
[57] Born, M. On the Quantum Theory of Pyroelectricity. Rev. Mod. Phys. 17, 245-251, (1945).
[58] Yang, Y. et al. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12, 2833-2838, (2012).
[59] Jiang, J. et al. Giant pyroelectricity in nanomembranes. Nature 607, 480-485, (2022).
[60] Lheritier, P. et al. Large harvested energy with non-linear pyroelectric modules. Nature 609, 718-721, (2022).
[61] Pandya, S. et al. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17, 432-438, (2018).
[62] Yang, M. M. et al. Piezoelectric and pyroelectric effects induced by interface polar symmetry. Nature 584, 377-381, (2020).
[63] Zabek, D., Taylor, J., Boulbar, E. L. & Bowen, C. R. Micropatterning of flexible and free standing polyvinylidene difluoride (PVDF) films for enhanced pyroelectric energy transformation. Adv. Energ. Mater. 5, 1401891, (2015).
[64] Olsen, R. B., Bruno, D. A. & Briscoe, J. M. Pyroelectric conversion cycles. J. Appl. Phys. 58, 4709-4716, (1985).
[65] Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105-114, (2008).
[66] Yu, A. Electron tunneling and contact resistance of metal-silicon contact barriers. Solid-State Electron. 13, 239-247, (1970).
[67] Zhou, C. et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 20, 1378-1384, (2021).
[68] Liu, Z. et al. Demonstration of ultrahigh thermoelectric efficiency of ∼7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule 5, 1196-1208, (2021).
[69] Ren, Z. et al. Significantly enhanced thermoelectric properties of p-type Mg3Sb2 via co-doping of Na and Zn. Acta Mater. 143, 265-271, (2018).
[70] Chang, C. et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360, 778, (2018).
[71] Zhu, T., Fu, C., Xie, H., Liu, Y. & Zhao, X. High efficiency half-heusler thermoelectric materials for energy harvesting. Adv. Energ. Mater. 5, 1500588, (2015).
[72] Zhu, H. et al. Understanding the asymmetrical thermoelectric performance for discovering promising thermoelectric materials. Sci. Adv. 5, eaav5813, (2019).
[73] Vineis, C. J., Shakouri, A., Majumdar, A. & Kanatzidis, M. G. Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970-3980, (2010).
[74] Jood, P., Ohta, M., Yamamoto, A. & Kanatzidis, M. G. Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules. Joule 2, 1339-1355, (2018).
[75] Kim, F. et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 3, 301-309, (2018).
[76] Bu, Z. et al. A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Nat. Commun. 13, 237, (2022).
[77] Sun, Y. et al. Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv. Mater. 24, 932-937, (2012).
[78] Yu, B. et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 370, 342-346, (2020).
[79] Han, Y., Zhang, J., Hu, R. & Xu, D. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Sci. Adv. 8, eabl5318, (2022).
[80] Snyder, G. J. in Energy Harvesting Technologies Vol. 3 Thermoelectric Energy Harvesting (eds S. Priya & D.J. Inman) Ch. 11, 325-336 (Springer, Boston, MA, 2009).
[81] Liu, S. et al. Giant and bidirectionally tunable thermopower in nonaqueous ionogels enabled by selective ion doping. Sci. Adv. 8, eabj3019, (2022).
[82] Ren, W. et al. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci. Adv. 7, eabe0586, (2021).
[83] Ding, T. et al. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat. Commun. 11, 6006, (2020).
[84] Sun, T. et al. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat. Commun. 11, 572, (2020).
[85] Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L. & Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050, (2016).
[86] Fu, L. et al. High-performance bismuth antimony telluride thermoelectric membrane on curved and flexible supports. ACS Energy Lett. 6, 2378-2385, (2021).
[87] Ding, Y. et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat. Commun. 10, 841, (2019).
[88] Hong, S. et al. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5, eaaw0536, (2019).
[89] Jin, Q. et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 18, 62-68, (2018).
[90] Wang, L. et al. Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energ. Environ. Sci. 11, 1307-1317, (2018).
[91] Xu, Q. et al. Conformal organic-inorganic semiconductor composites for flexible thermoelectrics. Energ. Environ. Sci. 13, 511-518, (2020).
[92] Vining, C. B. An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83-85, (2009).
[93] Haras, M. & Skotnicki, T. Thermoelectricity for IoT-A review. Nano Energy 54, 461-476, (2018).
[94] Geffroy, C., Lilley, D., Parez, P. S. & Prasher, R. Techno-economic analysis of waste-heat conversion. Joule 5, 3080-3096, (2021).
[95] LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C. & Goodson, K. E. Material and manufacturing cost considerations for thermoelectrics. Renew. Sust. Energ. Rev. 32, 313-327, (2014).
[96] Søndergaard, R. R., Hösel, M., Espinosa, N., Jørgensen, M. & Krebs, F. C. Practical evaluation of organic polymer thermoelectrics by large-area R2R processing on flexible substrates. Energy Sci. Eng. 1, 81-88, (2013).
[97] Yazawa, K. & Shakouri, A. Cost-efficiency trade-off and the design of thermoelectric power generators. Environ. Sci. Technol. 45, 7548-7553, (2011).
[98] Min, G. & Rowe, D. M. Optimisation of thermoelectric module geometry for ‘waste heat’ electric power generation. J. Power Sources 38, 253-259, (1992).
[99] Zhou, Y., Guo, Z. & He, J. Redesign high-performance flexible thermoelectrics: From mathematical algorithm to artificial cracks. Appl. Phys. Lett. 116, 043904, (2020).
[100] Yu, J. et al. Half-heusler thermoelectric module with high conversion efficiency and high power density. Adv. Energ. Mater. 10, 2000888, (2020).
[101] Xing, Y. et al. A Device-to-material strategy guiding the “double-high” thermoelectric module. Joule 4, 2475-2483, (2020).
[102] Xing, Y. et al. High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. Energ. Environ. Sci. 12, 3390-3399, (2019).
[103] Wang, X. et al. Geometric structural design for lead tellurium thermoelectric power generation application. Renew. Energy 141, 88-95, (2019).
[104] Qiu, P. et al. High-efficiency and stable thermoelectric module based on liquid-like materials. Joule 3, 1538-1548, (2019).
[105] Zhang, Q. et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energ. Environ. Sci. 10, 956-963, (2017).
[106] Xing, T. et al. High efficiency GeTe-based materials and modules for thermoelectric power generation. Energ. Environ. Sci. 14, 995-1003, (2021).
[107] Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830-834, (2021).
[108] Ji, D. et al. Geometry optimization of solar thermoelectric generator under different operating conditions via Taguchi method. Energy Convers. Manage. 238, 114158, (2021).
[109] Xu, S. et al. Two-dimensional flexible thermoelectric devices: Using modeling to deliver optimal capability. Appl. Phys. Rev. 8, 041404, (2021).
[110] Chu, J. et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices. Nat. Commun. 11, 2723, (2020).
[111] Karri, N. K. & Mo, C. Geometry optimization for structural reliability and performance of a thermoelectric generator. SN Applied Sciences 1, 1097, (2019).
[112] Wolf, M., Rybakov, A., Hinterding, R. & Feldhoff, A. Geometry optimization of thermoelectric modules: deviation of optimum power output and conversion efficiency. Entropy (Basel) 22, 1233, (2020).
[113] Bu, Z. et al. An over 10% module efficiency obtained using non-Bi2Te3 thermoelectric materials for recovering heat of <600 K. Energ. Environ. Sci. 14, 6506-6513, (2021).
[114] Nan, K. et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci. Adv. 4, eaau5849, (2018).
[115] El Oualid, S. et al. Innovative design of bismuth-telluride-based thermoelectric micro-generators with high output power. Energ. Environ. Sci. 13, 3579-3591, (2020).
[116] Ying, P., Reith, H., Nielsch, K. & He, R. Geometrical optimization and thermal-stability characterization of te-free thermoelectric modules based on MgAgSb/Mg3(Bi,Sb)2. Small 18, 2201183, (2022).
[117] Li, W. et al. Conformal High-power-density half-heusler thermoelectric modules: a pathway toward practical power generators. ACS Appl. Mater. Inter. 13, 53935-53944, (2021).
[118] Yang, Q. et al. Flexible thermoelectrics based on ductile semiconductors. Science 377, 854-858, (2022).
[119] Dongxu, J. et al. Geometry optimization of thermoelectric modules: Simulation and experimental study. Energy Convers. Manage. 195, 236-243, (2019).
[120] Yee, S. K., LeBlanc, S., Goodson, K. E. & Dames, C. $ per W metrics for thermoelectric power generation: beyond ZT. Energ. Environ. Sci. 6, 2561-2571, (2013).
[121] Yuan, X. et al. Bi2Te3-based wearable thermoelectric generator with high power density: from structure design to application. J. Mater. Chem. C 10, 6456-6463, (2022).
[122] Ferreira-Teixeira, S. & Pereira, A. M. Geometrical optimization of a thermoelectric device: Numerical simulations. Energy Convers. Manage. 169, 217-227, (2018).
[123] Liu, S. et al. Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference. Appl. Energy 225, 600-610, (2018).
[124] Kondaguli, R. S. & Malaji, P. V. Geometry design and performance evaluation of thermoelectric generator. Eur. Phys. J. Spec. Top. 231, 1587-1597, (2022).
[125] Wang, X. et al. An optimized design approach concerning thermoelectric generators with frustum-shaped legs based on three-dimensional multiphysics model. Energy 233, 120810, (2021).
[126] Ibeagwu, O. I. Modelling and comprehensive analysis of TEGs with diverse variable leg geometry. Energy 180, 90-106, (2019).
[127] Erturun, U., Erermis, K. & Mossi, K. Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices. Appl. Therm. Eng. 73, 128-141, (2014).
[128] Sun, T., Peavey, J. L., David Shelby, M., Ferguson, S. & O’Connor, B. T. Heat shrink formation of a corrugated thin film thermoelectric generator. Energy Convers. Manage. 103, 674-680, (2015).
[129] Hazan, E., Ben-Yehuda, O., Madar, N. & Gelbstein, Y. Functional graded germanium-lead chalcogenide-based thermoelectric module for renewable energy applications. Adv. Energy Mater. 5, 1500272, (2015).
[130] Jurado, J. P. et al. Solar harvesting: a unique opportunity for organic thermoelectrics? Adv. Energ. Mater. 9, 1902385, (2019).
[131] Kraemer, D. et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat. Energy 1, 16153, (2016).
[132] Li, X. et al. Measuring conversion efficiency of solar vapor generation. Joule 3, 1798-1803, (2019).
[133] Wu, L. et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11, 521, (2020).
[134] Engieering ToolBox. Water-Heat of Vaporization, https://www.eng-ineeringtoolbox.com/water-properties-d_1573.html (2010).
[135] Henderson-Sellers, B. A new formula for latent heat of vaporization of water as a function of temperature. Q. J. R. Meteorol. Soc. 110, 1186-1190, (1984).
[136] Engineering ToolBox, Water-Specific Heat, https://www.engineering-toolbox.com/specific-heat-capacity-water-d_660.html (2004).
[137] Zhou, Y. et al. Dynamic piezo-thermoelectric generator for simultaneously harvesting mechanical and thermal energies. Nano Energy 69, 104397, (2020).
[138] Yang, J. et al. Epitaxy enhancement of piezoelectric properties in P(VDF‐TrFE) copolymer films and applications in sensing and energy harvesting. Adv. Electron. Mater. 6, 2000578, (2020).
[139] Zhang, K., Wang, Y., Wang, Z. L. & Yang, Y. Standard and figure-of-merit for quantifying the performance of pyroelectric nanogenerators. Nano Energy 55, 534-540, (2019).
[140] Yang, R., Wang, Y., Jin, T., Feng, Y. & Tang, K. Development of a three-stage looped thermoacoustic electric generator capable of utilizing heat source below 120 °C. Energy Convers. Manage. 155, 161-168, (2018).
[141] Wang, Z. et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 10, 3234-3239, (2014).
[142] Zhu, L., Gao, M., Peh, C. K. N. & Ho, G. W. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy 57, 507-518, (2019).
[143] Chen, J. et al. High-toughness polyacrylamide gel containing hydrophobic crosslinking and its double network gel. Polymer 87, 73-80, (2016).
[144] Zhang, L., Tang, B., Wu, J., Li, R. & Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889-4894, (2015).
[145] Li, Y. et al. Ultrafast diameter-dependent water evaporation from nanopores. ACS Nano 13, 3363-3372, (2019).
[146] Liu, Y., Chen, J., Guo, D., Cao, M. & Jiang, L. Floatable, Self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface. ACS Appl. Mater. Inter. 7, 13645-13652, (2015).
[147] Guo, Y. et al. Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energ. Environ. Sci. 13, 2087-2095, (2020).
[148] Li, Y., Li, L. & Sun, J. Bioinspired self-healing superhydrophobic coatings. Angew. Chem. Int. Ed. 49, 6129-6133, (2010).
[149] Bhushan, B., Hansford, D. & Lee, K. K. Surface modification of silicon and polydimethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices. J. Vac. Sci. Technol. A 24, 1197-1202, (2006).
[150] Treccani, L., Yvonne Klein, T., Meder, F., Pardun, K. & Rezwan, K. Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomater. 9, 7115-7150, (2013).
[151] Matin, A., Baig, U. & Gondal, M. A. Facile preparation of superwetting surfaces by dip-coating of silane for efficient separation of different types of oils from water. Process Saf. Environ. Prot. 134, 226-238, (2020).
[152] Glass, N. R., Tjeung, R., Chan, P., Yeo, L. Y. & Friend, J. R. Organosilane deposition for microfluidic applications. Biomicrofluidics 5, 36501-365017, (2011).
[153] Li, Y., Xu, C.-Y., Hu, P. & Zhen, L. Carrier control of mos2 nanoflakes by functional self-assembled monolayers. ACS Nano 7, 7795-7804, (2013).
[154] Kim, S., Kim, J. & Kim, H.-Y. Dewetting of liquid film via vapour-mediated Marangoni effect. J. Fluid Mech. 872, 100-114, (2019).
[155] Dong, J., Wang, A., Ng, K. Y. S. & Mao, G. Self-assembly of octadecyltrichlorosilane monolayers on silicon-based substrates by chemical vapor deposition. Thin Solid Films 515, 2116-2122, (2006).
[156] Johnson, I., Choate, W. T. & Davidson, A. Waste Heat Recovery. Technology and Opportunities in U.S. Industry. Medium: ED; Size: 112 p. (BCS, Inc., Laurel, MD (United States), 2008).
[157] Kotz, M., Levermann, A. & Wenz, L. The effect of rainfall changes on economic production. Nature 601, 223-227, (2022).
[158] Li, X. et al. Stimulation of ambient energy generated electric field on crop plant growth. Nat. Food 3, 133-142, (2022).
[159] Korkmaz, S. & Kariper, İ. A. Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: fundamentals and current status. Nano Energy 84, 105888, (2021).
[160] Lin, Z. H., Cheng, G., Lee, S., Pradel, K. C. & Wang, Z. L. Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 26, 4690-4696, (2014).
[161] Xu, W. et al. A droplet-based electricity generator with high instantaneous power density. Nature 578, 392-396, (2020).
[162] Zhang, J., Lin, S., Zheng, M. & Wang, Z. L. Triboelectric nanogenerator as a probe for measuring the charge transfer between liquid and solid surfaces. ACS Nano 15, 14830-14837, (2021).
[163] Wang, X. et al. Dynamics for droplet-based electricity generators. Nano Energy 80, 105558, (2021).
[164] Gang, X. et al. Textile triboelectric nanogenerators simultaneously harvesting multiple "high-entropy" kinetic energies. ACS Appl. Mater. Inter. 13, 20145-20152, (2021).
[165] Nie, S. et al. Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Adv. Materi. Technol. 5, 2000454, (2020).
[166] Sayre, R. et al. An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems. Glob. Ecol. Conserv. 21, e00860, (2020).
[167] Pegasusweb Mirko Cecchini. World climate guide, https://www.climat-estotravel.com (2022).
[168] Park, T. et al. Photothermally activated pyroelectric polymer films for harvesting of solar heat with a hybrid energy cell structure. ACS Nano 9, 11830-11839, (2015).
[169] Zhao, T. et al. An infrared-driven flexible pyroelectric generator for non-contact energy harvester. Nanoscale 8, 8111-8117, (2016).
[170] Ma, N., Zhang, K. & Yang, Y. Photovoltaic-pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv. Mater. 29, 1703694, (2017).
[171] Kim, H. et al. Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 88, 6021-6025, (2000).
[172] Eshaghi, A. & Graeli, A. Optical and electrical properties of indium tin oxide (ITO) nanostructured thin films deposited on polycarbonate substrates “thickness effect”. Optik 125, 1478-1481, (2014).
[173] Adurodija, F. O. et al. Pulsed laser deposition of low-resistivity indium tin oxide thin films at low substrate temperature. Jpn. J. Appl. Phys. 38, 2710, (1999).
[174] Liu, Y. et al. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12, 2893-2899, (2018).
[175] Wei, X. et al. All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 15, 13200-13208, (2021).
[176] Roh, H., Kim, I. & Kim, D. Ultrathin unified harvesting module capable of generating electrical energy during rainy, windy, and sunny conditions. Nano Energy 70, 104515, (2020).
[177] Lin, M. F., Parida, K., Cheng, X. & Lee, P. S. Flexible superamphiphobic film for water energy harvesting. Adv. Materi. Technol. 2, 1600186, (2017).
[178] Jurado, U. T., Pu, S. H. & White, N. M. Wave impact energy harvesting through water-dielectric triboelectrification with single-electrode triboelectric nanogenerators for battery-less systems. Nano Energy 78, 105204, (2020).
[179] Niu, J. et al. Triboelectric energy harvesting of the superhydrophobic coating from dropping water. Polymers 12, 1936, (2020).
[180] Liu, X., Zhang, X. & Min, J. Maximum spreading of droplets impacting spherical surfaces. Phys. Fluids 31, 092102, (2019).
[181] Durey, G. et al. Droplets impaling on a cone. Phys. Rev. Fluids 5, 110507, (2020).
[182] Wu, H., Mendel, N., van den Ende, D., Zhou, G. & Mugele, F. Energy harvesting from drops impacting onto charged surfaces. Phys. Rev. Lett. 125, 078301, (2020).
[183] Chu, F. et al. Directional transportation of impacting droplets on wettability-controlled surfaces. Langmuir 36, 5855-5862, (2020).
[184] Hasan, M. A. M., Zhang, T., Wu, H. & Yang, Y. Water droplet-based nanogenerators. Adv. Energ. Mater. 12, 2201383, (2022).
[185] Xu, X. et al. Droplet energy harvesting panel. Energ. Environ. Sci. 15, 2916-2926, (2022).
[186] Zheng, Y. et al. Energy conversion analysis of multilayered triboelectric nanogenerators for synergistic rain and solar energy harvesting. Adv. Mater. 34, e2202238, (2022).
[187] Gao, F. et al. A Universal strategy for improving the energy transmission efficiency and load power of triboelectric nanogenerators. Adv. Energ. Mater. 9, 1901881, (2019).
[188] Rasel, M. S. et al. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 49, 603-613, (2018).
[189] Editors. A truly sustainable future. Nat. Sustain. 5, 281-281, (2022).
[190] Yang, Y. Pyroelectricity gain in multilayers. Nat. Energy 7, 1007-1008, (2022).
[191] Peng, Y. et al. Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain. 5, 339-347, (2022).
[192] Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 58, 669-672, (2019).
[193] Yang, Y. & Wang, Z. L. Emerging nanogenerators: powering the Internet of Things by high entropy energy. iScience 24, 102358, (2021).
[194] Hanrahan, B. et al. A portable power concept based on combustion and pyroelectric energy conversion. Cell Rep. Phys. Sci. 1, 100075, (2020).
[195] Gao, F., Li, W., Wang, X., Fang, X. & Ma, M. A self-sustaining pyroelectric nanogenerator driven by water vapor. Nano Energy 22, 19-26, (2016).
[196] Dishon Ben Ami, S. et al. Engineering of pyroelectric crystals decoupled from piezoelectricity as illustrated by doped alpha-glycine. Angew. Chem. Int. Ed. 61, e202213955, (2022).
[197] Xu, X. et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 609, 496-501, (2022).
[198] Kim, J. et al. High-performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P(VDF-TrFE) with controlled crystallinity and dipole alignment. Adv. Funct. Mater. 27, 1700702, (2017).
[199] Zhang, C., Zeng, Z., Zhu, Z., Karami, M. & Chen, X. Impact of leakage for electricity generation by pyroelectric converter. Phys. Rev. Appl. 14, 064079, (2020).
[200] Miao, L.-P. et al. Direct observation of geometric and sliding ferroelectricity in an amphidynamic crystal. Nat. Mater. 21, 1158-1164, (2022).
[201] Pandey, R. et al. Mutual insight on ferroelectrics and hybrid halide perovskites: a platform for future multifunctional energy conversion. Adv. Mater. 31, 1807376, (2019).
[202] Zhang, Y. et al. Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials. Joule 4, 1-9, (2020).
[203] Yang, Y. in Hybridized and Coupled Nanogenerators: Design, Performance, and Applications Vol. 1 Pyroelectric and Thermoelectric Nanogenerators Ch. 7, 219-257 (Wiley‐VCH GmbH, Boschstr, 2020).
[204] Song, K., Zhao, R., Wang, Z. L. & Yang, Y. Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing. Adv. Mater. 31, 1902831, (2019).
[205] Dongare, P. D., Alabastri, A., Neumann, O., Nordlander, P. & Halas, N. J. Solar thermal desalination as a nonlinear optical process. Proc. Natl. Acad. Sci. U.S.A. 116, 13182-13187, (2019).
[206] Zhao, L. et al. A Passive high-temperature high-pressure solar steam generator for medical sterilization. Joule 4, 2733-2745, (2020).
[207] Lin, K. T., Lin, H., Yang, T. & Jia, B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 11, 1389, (2020).
[208] Li, H., Bowen, C. R. & Yang, Y. Scavenging energy sources using ferroelectric materials. Adv. Funct. Mater. 31, 2100905, (2021).
[209] Boccaccio, T., Bottino, A., Capannelli, G. & Piaggio, P. Characterization of PVDF membranes by vibrational spectroscopy. J. Membr. Sci. 210, 315-329, (2002).
[210] Lines, M. E. & Glass, A. M. in Principles and Applications of Ferroelectrics and Related Materials Vol. 1 Films, Ceramics, and Metastable Polarization Ch. 15, 558 (Oxford University Press, 2001).
[211] Carbeck, J. D., Lacks, D. J. & Rutledge, G. C. A model of crystal polarization in β-poly(vinylidene fluoride). J. Chem. Phys. 103, 10347-10355, (1995).
[212] Kishore, R. A. in Ferroelectric Materials for Energy Harvesting and Storage Vol. Electronic and Optical Materials (eds Deepam Maurya, Abhijit Pramanick, & Dwight Viehland) Ch. 3, 85-106 (Woodhead Publishing, 2021).
[213] Lang, S. B. & Das-Gupta, D. K. in Handbook of Advanced Electronic and Photonic Materials and Devices Vol. 4 Pyroelectricity: Fundamentals and applications (ed Hari Singh Nalwa) Ch. 1, 1-55 (Academic Press, 2001).
[214] Gavrilova, N. D., Drozhdin, S. N., Novik, V. K. & Maksimov, E. G. Relationship between the pyroelectric coefficient and the lattice dynamics of the pyroelectrics. Solid State Commun. 48, 129-133, (1983).
[215] Lee, J. et al. Enhanced pyroelectric conversion of thermal radiation energy: Energy harvesting and non-contact proximity sensor. Nano Energy 97, 107178, (2022).
[216] Gokana, M. R., Wu, C.-M., Motora, K. G., Qi, J. Y. & Yen, W.-T. Effects of patterned electrode on near infrared light-triggered cesium tungsten bronze/poly(vinylidene)fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting. J. Power Sources 536, 231524, (2022).
[217] Azad, P., Khushboo & Vaish, R. Solar energy harvesting using pyroelectric effect associated with piezoelectric buzzer. Phys. Status Solidi A 216, 1900440, (2019).
[218] Zhang, Q., Agbossou, A., Feng, Z. & Cosnier, M. Solar micro-energy harvesting with pyroelectric effect and wind flow. Sensor Actuat. A-Phys. 168, 335-342, (2011).
[219] Song, K., Ma, N., Mishra, Y. K., Adelung, R. & Yang, Y. Achieving light-induced ultrahigh pyroelectric charge density toward self-powered uv light detection. Adv. Electron. Mater. 5, 1800413, (2019).
[220] Guo, R. et al. Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 4, 1990, (2013).
[221] Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143-147, (2010).
[222] Poosanaas, P., Tonooka, K. & Uchino, K. Photostrictive actuators. Mechatronics 10, 467-487, (2000).
[223] Spanier, J. E. et al. Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator. Nat. Photonics 10, 611-616, (2016).
[224] Li, K. et al. Enhanced thermoelectric performance and tunable polarity in 2D Cu2S-phenol superlattices composites for solar energy conversion. Nano Energy 84, 105902, (2021).
[225] Cho, C., Kim, B., Park, S. & Kim, E. Bisulfate transport in hydrogels for self-healable and transparent thermoelectric harvesting films. Energ. Environ. Sci. 15, 2049-2060, (2022).
[226] Das-Gupta, D. K. On the nature of pyroelectricity in polyvinylidene fluoride. Ferroelectrics 33, 75-89, (1981).
[227] Karthik, J., Agar, J. C., Damodaran, A. R. & Martin, L. W. Effect of 90 degrees domain walls and thermal expansion mismatch on the pyroelectric properties of epitaxial PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 109, 257602, (2012).
[228] Moalla, R. et al. Large anisotropy of ferroelectric and pyroelectric properties in heteroepitaxial oxide layers. Sci. Rep. 8, 4332, (2018).
[229] Raeder, T. M. et al. Anisotropic in-plane dielectric and ferroelectric properties of tensile-strained BaTiO3 films with three different crystallographic orientations. AIP Adv. 11, 025016, (2021).
[230] Aruchamy, N. et al. Influence of substrate stress on in-plane and out-of-plane ferroelectric properties of PZT films. J. Appl. Phys. 131, 014101, (2022).
[231] Matsuo, H. & Noguchi, Y. High photocurrent anisotropy in domain-engineered ferroelectrics for visible-light polarization detection. Adv. Opt. Mater. 10, 2201280, (2022).
[232] Aleksandrova, M., Sohan, A., Kollu, P. & Dobrikov, G. Pyroelectric properties of BaxSr(1-x)TiO3/PVDF-TrFE coating on silicon. Membranes (Basel) 11, 577, (2021).
[233] Poosanaas, P., Dogan, A., Thakoor, S. & Uchino, K. Influence of sample thickness on the performance of photostrictive ceramics. J. Appl. Phys. 84, 1508-1512, (1998).
[234] Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267-1324, (1998).
[235] Sasabe, H., Nakayama, T., Kumazawa, K., Miyata, S. & Fukada, E. Photovoltaic effect in Poly(vinylidene fluoride). Polym. J. 13, 967-973, (1981).
[236] Bowen, C. R., Kim, H. A., Weaver, P. M. & Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energ. Environ. Sci. 7, 25-44, (2014).
[237] Cooper, J. A Fast response total-radiation detector. Nature 194, 269-271, (1962).
[238] Wang, Y., Shi, Y., Mei, D. & Chen, Z. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Appl. Energy 215, 690-698, (2018).
[239] Ao, D. W. et al. Assembly-free fabrication of high-performance flexible inorganic thin-film thermoelectric device prepared by a thermal diffusion. Adv. Energ. Mater. 12, 2202731, (2022).
[240] Wei, M. et al. Directional thermal diffusion realizing inorganic Sb2Te3/Te hybrid thin films with high thermoelectric performance and flexibility. Adv. Funct. Mater. 32, 2207903, (2022).
[241] Kim, S. J., We, J. H. & Cho, B. J. A wearable thermoelectric generator fabricated on a glass fabric. Energ. Environ. Sci. 7, 1959, (2014).
[242] RMT Ltd. Thermoelectric power generating solutions. Report No. 1MD02-024-xxTEG, 2-8 (2018).
[243] Suarez, F., Nozariasbmarz, A., Vashaee, D. & Öztürk, M. C. Designing thermoelectric generators for self-powered wearable electronics. Energ. Environ. Sci. 9, 2099-2113, (2016).
[244] Beretta, D. et al. Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. R Rep. 138, 210-255, (2019).
[245] He, W. et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science 365, 1418-1424, (2019).
[246] Dhawan, R. et al. Si0.97Ge0.03 microelectronic thermoelectric generators with high power and voltage densities. Nat. Commun. 11, 4362, (2020).
[247] Wang, H. & Yu, C. Organic thermoelectrics: materials preparation, performance optimization, and device integration. Joule 3, 53-80, (2019).
[248] Cao, J. et al. Upcycling silicon photovoltaic waste into thermoelectrics. Adv. Mater. 34, e2110518, (2022).
[249] Ando Junior, O. H., Maran, A. L. O. & Henao, N. C. A review of the development and applications of thermoelectric microgenerators for energy harvesting. Renew. Sust. Energ. Rev. 91, 376-393, (2018).
[250] Jaegle, M. in COMSOL Conference 2008 Hannover.
[251] Scardulla, F. et al. A study on the effect of contact pressure during physical activity on photoplethysmographic heart rate measurements. Sensors 20, 5052, (2020).
[252] Zhu, B. et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energ. Environ. Sci. 13, 2106-2114, (2020).
[253] Snyder, G. J. & Snyder, A. H. Figure of merit ZT of a thermoelectric device defined from materials properties. Energ. Environ. Sci. 10, 2280-2283, (2017).
[254] Taylor, B. N. & Kuyatt, C. E. Guidelines for evaluating and expressing the uncertainty of NIST measurement results. 20 (US Department of Commerce, Technology Administration, NIST, 1994).
[255] Schroder, D. K. in Semiconductor Material and Device Characterization Ch. 3, 138-149 (John Wiley & Sons, Inc., 2005).
[256] Duan, J. et al. Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting. Joule 5, 768-779, (2021).

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/719131
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
Zhou Y. INTERFACIAL THERMAL MANIPULATION FOR WATER-ENERGY HARVESTING[D]. 新加坡. 新加坡国立大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11955016-周毅-物理系.pdf(13932KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周毅]的文章
百度学术
百度学术中相似的文章
[周毅]的文章
必应学术
必应学术中相似的文章
[周毅]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。