[1] International Energy Agency. Energy Efficiency 2022. (2022).
[2] Ritchie, H. & Roser, M. Clean water and sanitation, https://ourworldindata.org/clean-water-sanitation (2021).
[3] International Energy Agency. Energy Technology Perspectives 2020. (2020).
[4] International Energy Agency. Renewables 2021-Analysis and forecasts to 2026. (2021).
[5] Tao, P. et al. Solar-driven interfacial evaporation. Nat. Energy 3, 1031-1041, (2018).
[6] Gao, M., Zhu, L., Peh, C. K. & Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energ. Environ. Sci. 12, 841-864, (2019).
[7] Alvarez, P. J. J., Chan, C. K., Elimelech, M., Halas, N. J. & Villagran, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13, 634-641, (2018).
[8] Zhu, L., Gao, M., Peh, C. K. N., Wang, X. & Ho, G. W. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energ. Mater. 8, 1702149, (2018).
[9] Gao, M., Peh, C. K., Phan, H. T., Zhu, L. & Ho, G. W. Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic au nanoflowers photothermic vaporization and triboelectric generation. Adv. Energ. Mater. 8, 1800711, (2018).
[10] Zhu, L., Ding, T., Gao, M., Peh, C. K. N. & Ho, G. W. Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation. Adv. Energ. Mater. 9, 1900250, (2019).
[11] Zhou, Y. et al. Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production. Nano Energy 77, 105102, (2020).
[12] Ding, T., Zhou, Y., Ong, W. L. & Ho, G. W. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 42, 178-191, (2021).
[13] Zhou, Y. et al. Non-planar dielectrics derived thermal and electrostatic field inhomogeneity for boosted weather-adaptive energy harvesting. Nat. Sci. Rev. n/a, nwad186, (2023).
[14] Zhou, Y. et al. Giant polarization ripple in transverse pyroelectricity. Nat. Commun. 14, 426, (2023).
[15] Zhou, Y. & Ho, G. W. Pyroelectric heat harvesting, what’s next? Next Energy 1, 100026, (2023).
[16] Zhou, Y. et al. Physics-guided co-designing flexible thermoelectrics with techno-economic sustainability for low-grade heat harvesting. Sci. Adv. 9, eadf5701, (2023).
[17] Li, Y., Li, J., Qi, M., Qiu, C.-W. & Chen, H. Diffusive nonreciprocity and thermal diode. Physical Review B 103, 014307, (2021).
[18] Xu, L. et al. Blackhole-inspired thermal trapping with graded heat-conduction metadevices. Nat. Sci. Rev. 10, nwac159, (2022).
[19] Xu, G. et al. Tunable analog thermal material. Nat. Commun. 11, 6028, (2020).
[20] Böttner, H., Chen, G. & Venkatasubramanian, R. Aspects of thin-film superlattice thermoelectric materials, devices, and applications. MRS Bull. 31, 211-217, (2006).
[21] Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634-638, (2008).
[22] Xu, Z. et al. Scalable selective absorber with quasiperiodic nanostructure for low-grade solar energy harvesting. APL Photonics 8, 020801, (2023).
[23] Chowdhury, I. et al. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4, 235-238, (2009).
[24] Shin, J. et al. High ambipolar mobility in cubic boron arsenide. Science 377, 437-440, (2022).
[25] Ni, G. et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126, (2016).
[26] Kraemer, D. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532-538, (2011).
[27] Bowen, C. R. et al. Pyroelectric materials and devices for energy harvesting applications. Energ. Environ. Sci. 7, 3836-3856, (2014).
[28] Cooper, J. Minimum detectable power of a pyroelectric thermal receiver. Rev. Sci. Instrum. 33, 92-95, (1962).
[29] Vincent Ming Hong, N. et al. in Comprehensive Energy Systems Vol. 2 Pyroelectric Materials (ed Ibrahim Dincer) Ch. 2.23, 720-759 (Elsevier, 2018).
[30] Ghasemi, H. et al. Solar steam generation by heat localization. Nat. Commun. 5, 4449, (2014).
[31] Li, X. et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. U.S.A. 113, 13953-13958, (2016).
[32] Xu, N. et al. Going beyond efficiency for solar evaporation. Nat. Water 1, 494-501, (2023).
[33] Liu, G., Chen, T., Xu, J., Li, G. & Wang, K. Solar evaporation for simultaneous steam and power generation. J. Mater. Chem. A 8, 513-531, (2020).
[34] Zhang, X. et al. Conversion of solar power to chemical energy based on carbon nanoparticle modified photo-thermoelectric generator and electrochemical water splitting system. Nano Energy 48, 481-488, (2018).
[35] Zhang, Y., Ravi, S. K. & Tan, S. C. Food-derived carbonaceous materials for solar desalination and thermo-electric power generation. Nano Energy 65, 104006, (2019).
[36] Zong, L., Li, M. & Li, C. Intensifying solar-thermal harvest of low-dimension biologic nanostructures for electric power and solar desalination. Nano Energy 50, 308-315, (2018).
[37] Ding, T. et al. Hybrid photothermal pyroelectric and thermogalvanic generator for multisituation low grade heat harvesting. Adv. Energ. Mater. 8, 1802397, (2018).
[38] Shen, Q. et al. An open thermo-electrochemical cell enabled by interfacial evaporation. J. Mater. Chem. A 7, 6514-6521, (2019).
[39] Meng, F. L. et al. Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers. Adv Funct Mater 30, 2002867, (2020).
[40] Li, X. et al. Storage and Recycling of Interfacial Solar Steam Enthalpy. Joule 2, 2477-2484, (2018).
[41] Zou, H. et al. Quantifying the triboelectric series. Nat. Commun. 10, (2019).
[42] Xiao, P. et al. Exploring interface confined water flow and evaporation enables solar-thermal-electro integration towards clean water and electricity harvest via asymmetric functionalization strategy. Nano Energy 68, (2020).
[43] Lao, J. et al. Electricity generation based on a photothermally driven Ti3C2Tx MXene nanofluidic water pump. Nano Energy 70, 104481, (2020).
[44] Xue, G. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12, 317-321, (2017).
[45] Ding, T. et al. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 27, 1700551, (2017).
[46] Li, J. et al. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy 58, 797-802, (2019).
[47] Sun, J. et al. Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy 57, 269-278, (2019).
[48] Feser, J. P. & Ravichandran, J. More power to pyroelectrics. Nat. Mater. 17, 385-386, (2018).
[49] Vullers, R. J. M., van Schaijk, R., Doms, I., Van Hoof, C. & Mertens, R. Micropower energy harvesting. Solid-State Electron. 53, 684-693, (2009).
[50] Jachalke, S. et al. How to measure the pyroelectric coefficient? Appl. Phys. Rev. 4, 021303, (2017).
[51] Li, W. et al. Improper molecular ferroelectrics with simultaneous ultrahigh pyroelectricity and figures of merit. Sci. Adv. 7, eabe3068, (2021).
[52] Wang, X. Q. et al. Nanophotonic-engineered photothermal harnessing for waste heat management and pyroelectric generation. ACS Nano 11, 10568-10574, (2017).
[53] van der Ziel, A. Solar power generation with the pyroelectric effect. J. Appl. Phys. 45, 4128-4128, (1974).
[54] Born, M. & Huang, K. in Dynamical theory of crystal lattices Vol. 1 The free energy Ch. 6, 287-288 (Oxford University Press, 1954).
[55] Szigeti, B. Temperature dependence of pyroelectricity. Phys. Rev. Lett. 35, 1532-1534, (1975).
[56] Liu, J. & Pantelides, S. T. Mechanisms of Pyroelectricity in Three- and Two-Dimensional Materials. Phys. Rev. Lett. 120, 207602, (2018).
[57] Born, M. On the Quantum Theory of Pyroelectricity. Rev. Mod. Phys. 17, 245-251, (1945).
[58] Yang, Y. et al. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12, 2833-2838, (2012).
[59] Jiang, J. et al. Giant pyroelectricity in nanomembranes. Nature 607, 480-485, (2022).
[60] Lheritier, P. et al. Large harvested energy with non-linear pyroelectric modules. Nature 609, 718-721, (2022).
[61] Pandya, S. et al. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17, 432-438, (2018).
[62] Yang, M. M. et al. Piezoelectric and pyroelectric effects induced by interface polar symmetry. Nature 584, 377-381, (2020).
[63] Zabek, D., Taylor, J., Boulbar, E. L. & Bowen, C. R. Micropatterning of flexible and free standing polyvinylidene difluoride (PVDF) films for enhanced pyroelectric energy transformation. Adv. Energ. Mater. 5, 1401891, (2015).
[64] Olsen, R. B., Bruno, D. A. & Briscoe, J. M. Pyroelectric conversion cycles. J. Appl. Phys. 58, 4709-4716, (1985).
[65] Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105-114, (2008).
[66] Yu, A. Electron tunneling and contact resistance of metal-silicon contact barriers. Solid-State Electron. 13, 239-247, (1970).
[67] Zhou, C. et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 20, 1378-1384, (2021).
[68] Liu, Z. et al. Demonstration of ultrahigh thermoelectric efficiency of ∼7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule 5, 1196-1208, (2021).
[69] Ren, Z. et al. Significantly enhanced thermoelectric properties of p-type Mg3Sb2 via co-doping of Na and Zn. Acta Mater. 143, 265-271, (2018).
[70] Chang, C. et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360, 778, (2018).
[71] Zhu, T., Fu, C., Xie, H., Liu, Y. & Zhao, X. High efficiency half-heusler thermoelectric materials for energy harvesting. Adv. Energ. Mater. 5, 1500588, (2015).
[72] Zhu, H. et al. Understanding the asymmetrical thermoelectric performance for discovering promising thermoelectric materials. Sci. Adv. 5, eaav5813, (2019).
[73] Vineis, C. J., Shakouri, A., Majumdar, A. & Kanatzidis, M. G. Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970-3980, (2010).
[74] Jood, P., Ohta, M., Yamamoto, A. & Kanatzidis, M. G. Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules. Joule 2, 1339-1355, (2018).
[75] Kim, F. et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 3, 301-309, (2018).
[76] Bu, Z. et al. A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Nat. Commun. 13, 237, (2022).
[77] Sun, Y. et al. Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv. Mater. 24, 932-937, (2012).
[78] Yu, B. et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 370, 342-346, (2020).
[79] Han, Y., Zhang, J., Hu, R. & Xu, D. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Sci. Adv. 8, eabl5318, (2022).
[80] Snyder, G. J. in Energy Harvesting Technologies Vol. 3 Thermoelectric Energy Harvesting (eds S. Priya & D.J. Inman) Ch. 11, 325-336 (Springer, Boston, MA, 2009).
[81] Liu, S. et al. Giant and bidirectionally tunable thermopower in nonaqueous ionogels enabled by selective ion doping. Sci. Adv. 8, eabj3019, (2022).
[82] Ren, W. et al. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci. Adv. 7, eabe0586, (2021).
[83] Ding, T. et al. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat. Commun. 11, 6006, (2020).
[84] Sun, T. et al. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat. Commun. 11, 572, (2020).
[85] Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L. & Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050, (2016).
[86] Fu, L. et al. High-performance bismuth antimony telluride thermoelectric membrane on curved and flexible supports. ACS Energy Lett. 6, 2378-2385, (2021).
[87] Ding, Y. et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat. Commun. 10, 841, (2019).
[88] Hong, S. et al. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5, eaaw0536, (2019).
[89] Jin, Q. et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 18, 62-68, (2018).
[90] Wang, L. et al. Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energ. Environ. Sci. 11, 1307-1317, (2018).
[91] Xu, Q. et al. Conformal organic-inorganic semiconductor composites for flexible thermoelectrics. Energ. Environ. Sci. 13, 511-518, (2020).
[92] Vining, C. B. An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83-85, (2009).
[93] Haras, M. & Skotnicki, T. Thermoelectricity for IoT-A review. Nano Energy 54, 461-476, (2018).
[94] Geffroy, C., Lilley, D., Parez, P. S. & Prasher, R. Techno-economic analysis of waste-heat conversion. Joule 5, 3080-3096, (2021).
[95] LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C. & Goodson, K. E. Material and manufacturing cost considerations for thermoelectrics. Renew. Sust. Energ. Rev. 32, 313-327, (2014).
[96] Søndergaard, R. R., Hösel, M., Espinosa, N., Jørgensen, M. & Krebs, F. C. Practical evaluation of organic polymer thermoelectrics by large-area R2R processing on flexible substrates. Energy Sci. Eng. 1, 81-88, (2013).
[97] Yazawa, K. & Shakouri, A. Cost-efficiency trade-off and the design of thermoelectric power generators. Environ. Sci. Technol. 45, 7548-7553, (2011).
[98] Min, G. & Rowe, D. M. Optimisation of thermoelectric module geometry for ‘waste heat’ electric power generation. J. Power Sources 38, 253-259, (1992).
[99] Zhou, Y., Guo, Z. & He, J. Redesign high-performance flexible thermoelectrics: From mathematical algorithm to artificial cracks. Appl. Phys. Lett. 116, 043904, (2020).
[100] Yu, J. et al. Half-heusler thermoelectric module with high conversion efficiency and high power density. Adv. Energ. Mater. 10, 2000888, (2020).
[101] Xing, Y. et al. A Device-to-material strategy guiding the “double-high” thermoelectric module. Joule 4, 2475-2483, (2020).
[102] Xing, Y. et al. High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. Energ. Environ. Sci. 12, 3390-3399, (2019).
[103] Wang, X. et al. Geometric structural design for lead tellurium thermoelectric power generation application. Renew. Energy 141, 88-95, (2019).
[104] Qiu, P. et al. High-efficiency and stable thermoelectric module based on liquid-like materials. Joule 3, 1538-1548, (2019).
[105] Zhang, Q. et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energ. Environ. Sci. 10, 956-963, (2017).
[106] Xing, T. et al. High efficiency GeTe-based materials and modules for thermoelectric power generation. Energ. Environ. Sci. 14, 995-1003, (2021).
[107] Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830-834, (2021).
[108] Ji, D. et al. Geometry optimization of solar thermoelectric generator under different operating conditions via Taguchi method. Energy Convers. Manage. 238, 114158, (2021).
[109] Xu, S. et al. Two-dimensional flexible thermoelectric devices: Using modeling to deliver optimal capability. Appl. Phys. Rev. 8, 041404, (2021).
[110] Chu, J. et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices. Nat. Commun. 11, 2723, (2020).
[111] Karri, N. K. & Mo, C. Geometry optimization for structural reliability and performance of a thermoelectric generator. SN Applied Sciences 1, 1097, (2019).
[112] Wolf, M., Rybakov, A., Hinterding, R. & Feldhoff, A. Geometry optimization of thermoelectric modules: deviation of optimum power output and conversion efficiency. Entropy (Basel) 22, 1233, (2020).
[113] Bu, Z. et al. An over 10% module efficiency obtained using non-Bi2Te3 thermoelectric materials for recovering heat of <600 K. Energ. Environ. Sci. 14, 6506-6513, (2021).
[114] Nan, K. et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci. Adv. 4, eaau5849, (2018).
[115] El Oualid, S. et al. Innovative design of bismuth-telluride-based thermoelectric micro-generators with high output power. Energ. Environ. Sci. 13, 3579-3591, (2020).
[116] Ying, P., Reith, H., Nielsch, K. & He, R. Geometrical optimization and thermal-stability characterization of te-free thermoelectric modules based on MgAgSb/Mg3(Bi,Sb)2. Small 18, 2201183, (2022).
[117] Li, W. et al. Conformal High-power-density half-heusler thermoelectric modules: a pathway toward practical power generators. ACS Appl. Mater. Inter. 13, 53935-53944, (2021).
[118] Yang, Q. et al. Flexible thermoelectrics based on ductile semiconductors. Science 377, 854-858, (2022).
[119] Dongxu, J. et al. Geometry optimization of thermoelectric modules: Simulation and experimental study. Energy Convers. Manage. 195, 236-243, (2019).
[120] Yee, S. K., LeBlanc, S., Goodson, K. E. & Dames, C. $ per W metrics for thermoelectric power generation: beyond ZT. Energ. Environ. Sci. 6, 2561-2571, (2013).
[121] Yuan, X. et al. Bi2Te3-based wearable thermoelectric generator with high power density: from structure design to application. J. Mater. Chem. C 10, 6456-6463, (2022).
[122] Ferreira-Teixeira, S. & Pereira, A. M. Geometrical optimization of a thermoelectric device: Numerical simulations. Energy Convers. Manage. 169, 217-227, (2018).
[123] Liu, S. et al. Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference. Appl. Energy 225, 600-610, (2018).
[124] Kondaguli, R. S. & Malaji, P. V. Geometry design and performance evaluation of thermoelectric generator. Eur. Phys. J. Spec. Top. 231, 1587-1597, (2022).
[125] Wang, X. et al. An optimized design approach concerning thermoelectric generators with frustum-shaped legs based on three-dimensional multiphysics model. Energy 233, 120810, (2021).
[126] Ibeagwu, O. I. Modelling and comprehensive analysis of TEGs with diverse variable leg geometry. Energy 180, 90-106, (2019).
[127] Erturun, U., Erermis, K. & Mossi, K. Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices. Appl. Therm. Eng. 73, 128-141, (2014).
[128] Sun, T., Peavey, J. L., David Shelby, M., Ferguson, S. & O’Connor, B. T. Heat shrink formation of a corrugated thin film thermoelectric generator. Energy Convers. Manage. 103, 674-680, (2015).
[129] Hazan, E., Ben-Yehuda, O., Madar, N. & Gelbstein, Y. Functional graded germanium-lead chalcogenide-based thermoelectric module for renewable energy applications. Adv. Energy Mater. 5, 1500272, (2015).
[130] Jurado, J. P. et al. Solar harvesting: a unique opportunity for organic thermoelectrics? Adv. Energ. Mater. 9, 1902385, (2019).
[131] Kraemer, D. et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat. Energy 1, 16153, (2016).
[132] Li, X. et al. Measuring conversion efficiency of solar vapor generation. Joule 3, 1798-1803, (2019).
[133] Wu, L. et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11, 521, (2020).
[134] Engieering ToolBox. Water-Heat of Vaporization, https://www.eng-ineeringtoolbox.com/water-properties-d_1573.html (2010).
[135] Henderson-Sellers, B. A new formula for latent heat of vaporization of water as a function of temperature. Q. J. R. Meteorol. Soc. 110, 1186-1190, (1984).
[136] Engineering ToolBox, Water-Specific Heat, https://www.engineering-toolbox.com/specific-heat-capacity-water-d_660.html (2004).
[137] Zhou, Y. et al. Dynamic piezo-thermoelectric generator for simultaneously harvesting mechanical and thermal energies. Nano Energy 69, 104397, (2020).
[138] Yang, J. et al. Epitaxy enhancement of piezoelectric properties in P(VDF‐TrFE) copolymer films and applications in sensing and energy harvesting. Adv. Electron. Mater. 6, 2000578, (2020).
[139] Zhang, K., Wang, Y., Wang, Z. L. & Yang, Y. Standard and figure-of-merit for quantifying the performance of pyroelectric nanogenerators. Nano Energy 55, 534-540, (2019).
[140] Yang, R., Wang, Y., Jin, T., Feng, Y. & Tang, K. Development of a three-stage looped thermoacoustic electric generator capable of utilizing heat source below 120 °C. Energy Convers. Manage. 155, 161-168, (2018).
[141] Wang, Z. et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 10, 3234-3239, (2014).
[142] Zhu, L., Gao, M., Peh, C. K. N. & Ho, G. W. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy 57, 507-518, (2019).
[143] Chen, J. et al. High-toughness polyacrylamide gel containing hydrophobic crosslinking and its double network gel. Polymer 87, 73-80, (2016).
[144] Zhang, L., Tang, B., Wu, J., Li, R. & Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889-4894, (2015).
[145] Li, Y. et al. Ultrafast diameter-dependent water evaporation from nanopores. ACS Nano 13, 3363-3372, (2019).
[146] Liu, Y., Chen, J., Guo, D., Cao, M. & Jiang, L. Floatable, Self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface. ACS Appl. Mater. Inter. 7, 13645-13652, (2015).
[147] Guo, Y. et al. Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energ. Environ. Sci. 13, 2087-2095, (2020).
[148] Li, Y., Li, L. & Sun, J. Bioinspired self-healing superhydrophobic coatings. Angew. Chem. Int. Ed. 49, 6129-6133, (2010).
[149] Bhushan, B., Hansford, D. & Lee, K. K. Surface modification of silicon and polydimethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices. J. Vac. Sci. Technol. A 24, 1197-1202, (2006).
[150] Treccani, L., Yvonne Klein, T., Meder, F., Pardun, K. & Rezwan, K. Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomater. 9, 7115-7150, (2013).
[151] Matin, A., Baig, U. & Gondal, M. A. Facile preparation of superwetting surfaces by dip-coating of silane for efficient separation of different types of oils from water. Process Saf. Environ. Prot. 134, 226-238, (2020).
[152] Glass, N. R., Tjeung, R., Chan, P., Yeo, L. Y. & Friend, J. R. Organosilane deposition for microfluidic applications. Biomicrofluidics 5, 36501-365017, (2011).
[153] Li, Y., Xu, C.-Y., Hu, P. & Zhen, L. Carrier control of mos2 nanoflakes by functional self-assembled monolayers. ACS Nano 7, 7795-7804, (2013).
[154] Kim, S., Kim, J. & Kim, H.-Y. Dewetting of liquid film via vapour-mediated Marangoni effect. J. Fluid Mech. 872, 100-114, (2019).
[155] Dong, J., Wang, A., Ng, K. Y. S. & Mao, G. Self-assembly of octadecyltrichlorosilane monolayers on silicon-based substrates by chemical vapor deposition. Thin Solid Films 515, 2116-2122, (2006).
[156] Johnson, I., Choate, W. T. & Davidson, A. Waste Heat Recovery. Technology and Opportunities in U.S. Industry. Medium: ED; Size: 112 p. (BCS, Inc., Laurel, MD (United States), 2008).
[157] Kotz, M., Levermann, A. & Wenz, L. The effect of rainfall changes on economic production. Nature 601, 223-227, (2022).
[158] Li, X. et al. Stimulation of ambient energy generated electric field on crop plant growth. Nat. Food 3, 133-142, (2022).
[159] Korkmaz, S. & Kariper, İ. A. Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: fundamentals and current status. Nano Energy 84, 105888, (2021).
[160] Lin, Z. H., Cheng, G., Lee, S., Pradel, K. C. & Wang, Z. L. Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 26, 4690-4696, (2014).
[161] Xu, W. et al. A droplet-based electricity generator with high instantaneous power density. Nature 578, 392-396, (2020).
[162] Zhang, J., Lin, S., Zheng, M. & Wang, Z. L. Triboelectric nanogenerator as a probe for measuring the charge transfer between liquid and solid surfaces. ACS Nano 15, 14830-14837, (2021).
[163] Wang, X. et al. Dynamics for droplet-based electricity generators. Nano Energy 80, 105558, (2021).
[164] Gang, X. et al. Textile triboelectric nanogenerators simultaneously harvesting multiple "high-entropy" kinetic energies. ACS Appl. Mater. Inter. 13, 20145-20152, (2021).
[165] Nie, S. et al. Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Adv. Materi. Technol. 5, 2000454, (2020).
[166] Sayre, R. et al. An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems. Glob. Ecol. Conserv. 21, e00860, (2020).
[167] Pegasusweb Mirko Cecchini. World climate guide, https://www.climat-estotravel.com (2022).
[168] Park, T. et al. Photothermally activated pyroelectric polymer films for harvesting of solar heat with a hybrid energy cell structure. ACS Nano 9, 11830-11839, (2015).
[169] Zhao, T. et al. An infrared-driven flexible pyroelectric generator for non-contact energy harvester. Nanoscale 8, 8111-8117, (2016).
[170] Ma, N., Zhang, K. & Yang, Y. Photovoltaic-pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv. Mater. 29, 1703694, (2017).
[171] Kim, H. et al. Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 88, 6021-6025, (2000).
[172] Eshaghi, A. & Graeli, A. Optical and electrical properties of indium tin oxide (ITO) nanostructured thin films deposited on polycarbonate substrates “thickness effect”. Optik 125, 1478-1481, (2014).
[173] Adurodija, F. O. et al. Pulsed laser deposition of low-resistivity indium tin oxide thin films at low substrate temperature. Jpn. J. Appl. Phys. 38, 2710, (1999).
[174] Liu, Y. et al. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12, 2893-2899, (2018).
[175] Wei, X. et al. All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 15, 13200-13208, (2021).
[176] Roh, H., Kim, I. & Kim, D. Ultrathin unified harvesting module capable of generating electrical energy during rainy, windy, and sunny conditions. Nano Energy 70, 104515, (2020).
[177] Lin, M. F., Parida, K., Cheng, X. & Lee, P. S. Flexible superamphiphobic film for water energy harvesting. Adv. Materi. Technol. 2, 1600186, (2017).
[178] Jurado, U. T., Pu, S. H. & White, N. M. Wave impact energy harvesting through water-dielectric triboelectrification with single-electrode triboelectric nanogenerators for battery-less systems. Nano Energy 78, 105204, (2020).
[179] Niu, J. et al. Triboelectric energy harvesting of the superhydrophobic coating from dropping water. Polymers 12, 1936, (2020).
[180] Liu, X., Zhang, X. & Min, J. Maximum spreading of droplets impacting spherical surfaces. Phys. Fluids 31, 092102, (2019).
[181] Durey, G. et al. Droplets impaling on a cone. Phys. Rev. Fluids 5, 110507, (2020).
[182] Wu, H., Mendel, N., van den Ende, D., Zhou, G. & Mugele, F. Energy harvesting from drops impacting onto charged surfaces. Phys. Rev. Lett. 125, 078301, (2020).
[183] Chu, F. et al. Directional transportation of impacting droplets on wettability-controlled surfaces. Langmuir 36, 5855-5862, (2020).
[184] Hasan, M. A. M., Zhang, T., Wu, H. & Yang, Y. Water droplet-based nanogenerators. Adv. Energ. Mater. 12, 2201383, (2022).
[185] Xu, X. et al. Droplet energy harvesting panel. Energ. Environ. Sci. 15, 2916-2926, (2022).
[186] Zheng, Y. et al. Energy conversion analysis of multilayered triboelectric nanogenerators for synergistic rain and solar energy harvesting. Adv. Mater. 34, e2202238, (2022).
[187] Gao, F. et al. A Universal strategy for improving the energy transmission efficiency and load power of triboelectric nanogenerators. Adv. Energ. Mater. 9, 1901881, (2019).
[188] Rasel, M. S. et al. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 49, 603-613, (2018).
[189] Editors. A truly sustainable future. Nat. Sustain. 5, 281-281, (2022).
[190] Yang, Y. Pyroelectricity gain in multilayers. Nat. Energy 7, 1007-1008, (2022).
[191] Peng, Y. et al. Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain. 5, 339-347, (2022).
[192] Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 58, 669-672, (2019).
[193] Yang, Y. & Wang, Z. L. Emerging nanogenerators: powering the Internet of Things by high entropy energy. iScience 24, 102358, (2021).
[194] Hanrahan, B. et al. A portable power concept based on combustion and pyroelectric energy conversion. Cell Rep. Phys. Sci. 1, 100075, (2020).
[195] Gao, F., Li, W., Wang, X., Fang, X. & Ma, M. A self-sustaining pyroelectric nanogenerator driven by water vapor. Nano Energy 22, 19-26, (2016).
[196] Dishon Ben Ami, S. et al. Engineering of pyroelectric crystals decoupled from piezoelectricity as illustrated by doped alpha-glycine. Angew. Chem. Int. Ed. 61, e202213955, (2022).
[197] Xu, X. et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 609, 496-501, (2022).
[198] Kim, J. et al. High-performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P(VDF-TrFE) with controlled crystallinity and dipole alignment. Adv. Funct. Mater. 27, 1700702, (2017).
[199] Zhang, C., Zeng, Z., Zhu, Z., Karami, M. & Chen, X. Impact of leakage for electricity generation by pyroelectric converter. Phys. Rev. Appl. 14, 064079, (2020).
[200] Miao, L.-P. et al. Direct observation of geometric and sliding ferroelectricity in an amphidynamic crystal. Nat. Mater. 21, 1158-1164, (2022).
[201] Pandey, R. et al. Mutual insight on ferroelectrics and hybrid halide perovskites: a platform for future multifunctional energy conversion. Adv. Mater. 31, 1807376, (2019).
[202] Zhang, Y. et al. Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials. Joule 4, 1-9, (2020).
[203] Yang, Y. in Hybridized and Coupled Nanogenerators: Design, Performance, and Applications Vol. 1 Pyroelectric and Thermoelectric Nanogenerators Ch. 7, 219-257 (Wiley‐VCH GmbH, Boschstr, 2020).
[204] Song, K., Zhao, R., Wang, Z. L. & Yang, Y. Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing. Adv. Mater. 31, 1902831, (2019).
[205] Dongare, P. D., Alabastri, A., Neumann, O., Nordlander, P. & Halas, N. J. Solar thermal desalination as a nonlinear optical process. Proc. Natl. Acad. Sci. U.S.A. 116, 13182-13187, (2019).
[206] Zhao, L. et al. A Passive high-temperature high-pressure solar steam generator for medical sterilization. Joule 4, 2733-2745, (2020).
[207] Lin, K. T., Lin, H., Yang, T. & Jia, B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 11, 1389, (2020).
[208] Li, H., Bowen, C. R. & Yang, Y. Scavenging energy sources using ferroelectric materials. Adv. Funct. Mater. 31, 2100905, (2021).
[209] Boccaccio, T., Bottino, A., Capannelli, G. & Piaggio, P. Characterization of PVDF membranes by vibrational spectroscopy. J. Membr. Sci. 210, 315-329, (2002).
[210] Lines, M. E. & Glass, A. M. in Principles and Applications of Ferroelectrics and Related Materials Vol. 1 Films, Ceramics, and Metastable Polarization Ch. 15, 558 (Oxford University Press, 2001).
[211] Carbeck, J. D., Lacks, D. J. & Rutledge, G. C. A model of crystal polarization in β-poly(vinylidene fluoride). J. Chem. Phys. 103, 10347-10355, (1995).
[212] Kishore, R. A. in Ferroelectric Materials for Energy Harvesting and Storage Vol. Electronic and Optical Materials (eds Deepam Maurya, Abhijit Pramanick, & Dwight Viehland) Ch. 3, 85-106 (Woodhead Publishing, 2021).
[213] Lang, S. B. & Das-Gupta, D. K. in Handbook of Advanced Electronic and Photonic Materials and Devices Vol. 4 Pyroelectricity: Fundamentals and applications (ed Hari Singh Nalwa) Ch. 1, 1-55 (Academic Press, 2001).
[214] Gavrilova, N. D., Drozhdin, S. N., Novik, V. K. & Maksimov, E. G. Relationship between the pyroelectric coefficient and the lattice dynamics of the pyroelectrics. Solid State Commun. 48, 129-133, (1983).
[215] Lee, J. et al. Enhanced pyroelectric conversion of thermal radiation energy: Energy harvesting and non-contact proximity sensor. Nano Energy 97, 107178, (2022).
[216] Gokana, M. R., Wu, C.-M., Motora, K. G., Qi, J. Y. & Yen, W.-T. Effects of patterned electrode on near infrared light-triggered cesium tungsten bronze/poly(vinylidene)fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting. J. Power Sources 536, 231524, (2022).
[217] Azad, P., Khushboo & Vaish, R. Solar energy harvesting using pyroelectric effect associated with piezoelectric buzzer. Phys. Status Solidi A 216, 1900440, (2019).
[218] Zhang, Q., Agbossou, A., Feng, Z. & Cosnier, M. Solar micro-energy harvesting with pyroelectric effect and wind flow. Sensor Actuat. A-Phys. 168, 335-342, (2011).
[219] Song, K., Ma, N., Mishra, Y. K., Adelung, R. & Yang, Y. Achieving light-induced ultrahigh pyroelectric charge density toward self-powered uv light detection. Adv. Electron. Mater. 5, 1800413, (2019).
[220] Guo, R. et al. Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 4, 1990, (2013).
[221] Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143-147, (2010).
[222] Poosanaas, P., Tonooka, K. & Uchino, K. Photostrictive actuators. Mechatronics 10, 467-487, (2000).
[223] Spanier, J. E. et al. Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator. Nat. Photonics 10, 611-616, (2016).
[224] Li, K. et al. Enhanced thermoelectric performance and tunable polarity in 2D Cu2S-phenol superlattices composites for solar energy conversion. Nano Energy 84, 105902, (2021).
[225] Cho, C., Kim, B., Park, S. & Kim, E. Bisulfate transport in hydrogels for self-healable and transparent thermoelectric harvesting films. Energ. Environ. Sci. 15, 2049-2060, (2022).
[226] Das-Gupta, D. K. On the nature of pyroelectricity in polyvinylidene fluoride. Ferroelectrics 33, 75-89, (1981).
[227] Karthik, J., Agar, J. C., Damodaran, A. R. & Martin, L. W. Effect of 90 degrees domain walls and thermal expansion mismatch on the pyroelectric properties of epitaxial PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 109, 257602, (2012).
[228] Moalla, R. et al. Large anisotropy of ferroelectric and pyroelectric properties in heteroepitaxial oxide layers. Sci. Rep. 8, 4332, (2018).
[229] Raeder, T. M. et al. Anisotropic in-plane dielectric and ferroelectric properties of tensile-strained BaTiO3 films with three different crystallographic orientations. AIP Adv. 11, 025016, (2021).
[230] Aruchamy, N. et al. Influence of substrate stress on in-plane and out-of-plane ferroelectric properties of PZT films. J. Appl. Phys. 131, 014101, (2022).
[231] Matsuo, H. & Noguchi, Y. High photocurrent anisotropy in domain-engineered ferroelectrics for visible-light polarization detection. Adv. Opt. Mater. 10, 2201280, (2022).
[232] Aleksandrova, M., Sohan, A., Kollu, P. & Dobrikov, G. Pyroelectric properties of BaxSr(1-x)TiO3/PVDF-TrFE coating on silicon. Membranes (Basel) 11, 577, (2021).
[233] Poosanaas, P., Dogan, A., Thakoor, S. & Uchino, K. Influence of sample thickness on the performance of photostrictive ceramics. J. Appl. Phys. 84, 1508-1512, (1998).
[234] Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267-1324, (1998).
[235] Sasabe, H., Nakayama, T., Kumazawa, K., Miyata, S. & Fukada, E. Photovoltaic effect in Poly(vinylidene fluoride). Polym. J. 13, 967-973, (1981).
[236] Bowen, C. R., Kim, H. A., Weaver, P. M. & Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energ. Environ. Sci. 7, 25-44, (2014).
[237] Cooper, J. A Fast response total-radiation detector. Nature 194, 269-271, (1962).
[238] Wang, Y., Shi, Y., Mei, D. & Chen, Z. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Appl. Energy 215, 690-698, (2018).
[239] Ao, D. W. et al. Assembly-free fabrication of high-performance flexible inorganic thin-film thermoelectric device prepared by a thermal diffusion. Adv. Energ. Mater. 12, 2202731, (2022).
[240] Wei, M. et al. Directional thermal diffusion realizing inorganic Sb2Te3/Te hybrid thin films with high thermoelectric performance and flexibility. Adv. Funct. Mater. 32, 2207903, (2022).
[241] Kim, S. J., We, J. H. & Cho, B. J. A wearable thermoelectric generator fabricated on a glass fabric. Energ. Environ. Sci. 7, 1959, (2014).
[242] RMT Ltd. Thermoelectric power generating solutions. Report No. 1MD02-024-xxTEG, 2-8 (2018).
[243] Suarez, F., Nozariasbmarz, A., Vashaee, D. & Öztürk, M. C. Designing thermoelectric generators for self-powered wearable electronics. Energ. Environ. Sci. 9, 2099-2113, (2016).
[244] Beretta, D. et al. Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. R Rep. 138, 210-255, (2019).
[245] He, W. et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science 365, 1418-1424, (2019).
[246] Dhawan, R. et al. Si0.97Ge0.03 microelectronic thermoelectric generators with high power and voltage densities. Nat. Commun. 11, 4362, (2020).
[247] Wang, H. & Yu, C. Organic thermoelectrics: materials preparation, performance optimization, and device integration. Joule 3, 53-80, (2019).
[248] Cao, J. et al. Upcycling silicon photovoltaic waste into thermoelectrics. Adv. Mater. 34, e2110518, (2022).
[249] Ando Junior, O. H., Maran, A. L. O. & Henao, N. C. A review of the development and applications of thermoelectric microgenerators for energy harvesting. Renew. Sust. Energ. Rev. 91, 376-393, (2018).
[250] Jaegle, M. in COMSOL Conference 2008 Hannover.
[251] Scardulla, F. et al. A study on the effect of contact pressure during physical activity on photoplethysmographic heart rate measurements. Sensors 20, 5052, (2020).
[252] Zhu, B. et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energ. Environ. Sci. 13, 2106-2114, (2020).
[253] Snyder, G. J. & Snyder, A. H. Figure of merit ZT of a thermoelectric device defined from materials properties. Energ. Environ. Sci. 10, 2280-2283, (2017).
[254] Taylor, B. N. & Kuyatt, C. E. Guidelines for evaluating and expressing the uncertainty of NIST measurement results. 20 (US Department of Commerce, Technology Administration, NIST, 1994).
[255] Schroder, D. K. in Semiconductor Material and Device Characterization Ch. 3, 138-149 (John Wiley & Sons, Inc., 2005).
[256] Duan, J. et al. Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting. Joule 5, 768-779, (2021).
修改评论