中文版 | English
题名

Material Removal Mechanism and Surface Integrity of Wrought and SLM-ed Ti6Al4V Alloys in Ultra-high-speed Machining

姓名
姓名拼音
JIANG Qinghong
学号
11968003
学位类型
博士
学位专业
机械工程
导师
张璧
导师单位
机械与能源工程系
外机构导师
傅铭旺
外机构导师单位
香港理工大学机械工程系
论文答辩日期
2023-12-14
论文提交日期
2024-02-29
学位授予单位
香港理工大学
学位授予地点
香港
摘要

Titanium alloy (Ti-alloy) is a preeminent structural material with remarkable mechanical properties such as high specific strength, excellent corrosion resistance, and ideal biocompatibility. It has been extensively applied in various industries including aviation and aerospace, navigation, automotive, and biomedical industries. The conventional manufacturing and processing of high-performance Ti-alloy parts, however, encounter many technological bottlenecks and limitations, such as low productivity, difficulty in fabricating complex structures, high material wastage, and high production cost.

Recently, selective laser melting (SLM) has emerged as an advanced additive manufacturing technique for rapid, integrated, and lightweight manufacturing of Ti-alloy parts. Nevertheless, the SLM-manufactured (SLM-ed) Ti-alloy parts suffer from the trade-off dilemma between strength and ductility due to the internal defects and the non-equilibrium microstructure induced by high cooling rate and large temperature gradient during the solidification process. Moreover, the inherent inferior surface quality of SLM-ed parts limits their applications in critical areas. Therefore, surface machining is imperative for achieving high surface integrity of SLM-ed Ti-alloy parts.

However, Ti-alloy is known as a typical difficult-to-machine material, characterized by high specific strength, low thermal conductivity, high chemical reactivity, and low elastic modulus. Consequently, high machining force, elevated machining temperature, rapid tool wear, and compromised surface integrity tend to arise in the conventional machining of Ti-alloy. Furthermore, SLM-ed Ti-alloy exhibits completely different microstructures and properties compared to its wrought counterpart. These alterations not only affect machinability but also introduce additional challenges in the machining process.

Ultra-high-speed machining (UHSM) is a potential technique to address the machining challenges associated with Ti-alloy, given its capacity to enhance both surface integrity and machining efficiency. However, the dynamic responses and deformation behaviors of materials at ultra-high strain rates differ significantly from those at low strain rates. This leads to distinct material removal mechanisms in UHSM, which remains inadequately explored. Furthermore, there is limited research on the variation of microstructure evolution and surface integrity with machining speed in the machining of Ti-alloy. Additionally, the influence of different microstructures in SLM-ed and wrought Ti-alloys on their machinability also requires thorough study and analysis.

In tandem with these, this study starts with the SLM manufacturing of Ti6Al4V to fabricate strong and ductile Ti6Al4V by tailoring process parameters and microstructures. Subsequently, single-point-scratching (SPS) experiments and finite element simulations are conducted together to reveal the material removal and deformation mechanisms of both wrought and SLM-ed Ti6Al4V alloys, covering the spectrum from conventional speed machining (CSM) to ultra-high-speed machining (UHSM). Furthermore, the surface integrity of Ti6Al4V alloys in ultra-high-speed grinding (UHSG) is systematically investigated.

The first part of this thesis reports the investigations on the densification behaviors, defect formation mechanisms, microstructure evolution, and mechanical properties of SLM-ed Ti6Al4V at different energy densities. The densification map and process map of SLM-ed Ti6Al4V were developed to support the fabrication of near fully dense parts. The microstructure analysis revealed a progressive transformation with the decrease in energy density: from coarse α+β lamellar, ultrafine α+β lamellar, and to fully α' microstructure. The remarkable tensile strength combining high strength and ductility (Tensile strength: 1,390 MPa; elongation: 9.66%) was achieved at energy density of 76 J/mm3 due to the high densification level and ultrafine microstructures. This study further revealed the fracture mechanisms and established the process-structure-property relationship of SLM-ed Ti6Al4V. These findings provide guidance for realizing the fabrication of strong and ductile Ti6Al4V by SLM.

The second part focuses on the material removal mechanisms of wrought coarse-grained Ti6Al4V under low-speed to ultra-high-speed conditions based on a developed SPS system. The material removal mechanisms were investigated in terms of surface creation, subsurface deformation, and chip formation. Multiscale characterization combining TKD, FIB, and STEM techniques was employed to investigate the microstructure evolution at the speed ranging from 20 to 220 m/s. The results indicated that material pile-up was suppressed at higher machining speeds due to the inhibition of plastic deformation. A deep machining-deformed zone (MDZ), consisting of a dynamic recrystallization zone (DRXZ) and a plastic deformation zone (PDZ), was induced at 20 m/s. The depth of PDZ was considerably reduced at higher machining speed and was absent at 220 m/s. Moreover, under ultra-high strain rate deformation, dislocation slip was inhibited, resulting in a transition of deformation mechanism from dislocation-mediated deformation (DMD) to twinning-mediated deformation (TMD). Consequently, a deformation-induced twin zone (DITZ) was generated in the topmost layer, in which a distinct microstructure characterized by ultrafine grain embedding nanotwins (UGENTs) was induced. Additionally, the segmented chips transitioned to the fragmented chips with the increasing machining speed. This study enhances the understanding of material removal and deformation mechanisms at ultra-high strain rates.

The third part delves into the material removal mechanisms of SLM-ed Ti6Al4V based on part 2. SLM-ed Ti6Al4V exhibited a decline pile-up ratio as the machining speed increased. However, the higher brittleness of SLM-ed Ti6Al4V resulted in less material accumulation on the edges of scratches. Additionally, the MDZ exhibited “skin effect” with an increase in machining speed, but it was shallower in SLM-ed Ti6Al4V compared with that in wrought Ti6Al4V under same speed conditions. As the strain rate increased, the deformation mechanism of SLM-ed Ti6Al4V also transitioned from DMD to TMD to coordinate the deformation. The multiple-fold twins were induced in the UGENTs, and the formation mechanism was revealed by multiscale characterizations and analyses. Regarding the chip formation, wrought Ti6Al4V exhibited a higher sensitivity to strain rate compared to SLM-ed Ti6Al4V. This can be attributed to different chip formation mechanisms. The segmented chips were formed as the phase transformation activated the adiabatic shear bands (ASBs) in wrought Ti6Al4V, while the relative slip along the lath boundaries triggered the segmented chips in SLM-ed Ti6Al4V.

In the last part, a UHSG system was developed to achieve high-efficiency and high-quality machining. A series of grinding experiments of both wrought and SLM-ed Ti6Al4V alloys with the linear grinding speed ranging from 60 to 250 m/s were conducted. The surface integrity of the machined samples was systematically analyzed by considering both surface and subsurface characteristics. The results verified the material removal mechanisms elucidated in previous chapters and demonstrated the potential of UHSG in improving surface integrity. Meanwhile, the grinding forces of both materials at different grinding speeds were measured to evaluate their machinability. The effects of strain rate and microstructures on the deformation mechanism and machinability were elucidated based on the systematic investigations.

This thesis presents an original study on the material removal/deformation mechanisms and surface integrity of wrought and SLM-ed Ti6Al4V alloys in UHSM by applying multiscale characterizations. These findings not only provide a scientific and theoretical basis but also offer instructive insights into the manufacturing and processing of high-performance Ti-alloy parts.

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2024-04
参考文献列表

Abukhshim N. A., Mativenga P. T. and Sheikh M. A. (2006). "Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining." International Journal of Machine Tools and Manufacture 46(7): 782-800.Agrawal C., Wadhwa J., Pitroda A., Pruncu C. I., Sarikaya M. and Khanna N. (2021). "Comprehensive analysis of tool wear, tool life, surface roughness, costing and carbon emissions in turning Ti–6Al–4V titanium alloy: Cryogenic versus wet machining." Tribology International 153: 106597.Akcan S., Shah W. S., Moylan S. P., Chandrasekar S., Chhabra P. N. and Yang H. T. Y. (2002). "Formation of white layers in steels by machining and their characteristics." Metallurgical and Materials Transactions A 33(4): 1245-1254.Al-Rubaie K. S., Melotti S., Rabelo A., Paiva J. M., Elbestawi M. A. and Veldhuis S. C. (2020). "Machinability of SLM-produced Ti6Al4V titanium alloy parts." Journal of Manufacturing Processes 57: 768-786.Antonysamy A., Meyer J. and Prangnell P. (2013). "Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting." Materials Characterization 84: 153–168.Aramcharoen A., Mativenga P. T., Group M. and Technology L. P. J. I. J. o. A. M. (2008). "White layer formation and hardening effects in hard turning of H13 tool steel with CrTiAlN and CrTiAlN/MoST-coated carbide tools." 36(7-8): 650-657.Armstrong M., Mehrabi H. and Naveed N. (2022). "An overview of modern metal additive manufacturing technology." Journal of Manufacturing Processes 84: 1001-1029.Arndt G. (1973). "Ultra-High-Speed Machining: A Review and an Analysis of Cutting Forces." ARCHIVE Proceedings of the Institution of Mechanical Engineers 187(1973): 625-634.Backer W., Marshall E. and Shaw M. (1952). "The size effect in metal cutting." Transactions of the American Society of Mechanical Engineers 74(1): 61-71.Bayat M., Thanki A., Mohanty S., Witvrouw A., Yang S., Thorborg J., Tiedje N. S. and Hattel J. H. (2019). "Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation." Additive Manufacturing 30: 100835.Bertrand E., Castany P., Péron I. and Gloriant T. (2011). "Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis." Scripta Materialia 64(12): 1110-1113.Bi Z., Tokura H. and Yoshikawa M. J. J. o. M. S. (1988). "Study on surface cracking of alumina scratched by single-point diamonds." 23(9): 3214-3224.Bourell D., Kruth J. P., Leu M., Levy G., Rosen D., Beese A. M. and Clare A. J. C. a. (2017). "Materials for additive manufacturing." 66(2): 659-681.Bracke L., Verbeken K., Kestens L. and Penning J. (2009). "Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel." Acta Materialia 57(5): 1512-1524.Brown M., Crawforth P., M'Saoubi R., Larsson T., Wynne B., Mantle A. and Ghadbeigi H. (2019). "Quantitative characterization of machining-induced white layers in Ti–6Al–4V." Materials Science and Engineering: A 764: 138220.Brown M., M’Saoubi R., Crawforth P., Mantle A., McGourlay J. and Ghadbeigi H. (2022). "On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy." Journal of Materials Processing Technology 299: 117378.Cai T., Zhang Z., Zhang P., Yang J. B. and Zhang Z. (2014). "Competition between slip and twinning in face-centered cubic metals." Journal of Applied Physics 116: 163512.Cain V., Thijs L., Humbeeck J. V. and Hooreweder B. V. (2015). "Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting." Additive Manufacturing 5: 68-76.Calamaz M., Coupard D. and Girot F. (2008). "A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V." International Journal of Machine Tools and Manufacture 48(3): 275-288.Cao S., Chen Z., Lim C. V. S., Yang K., Jia Q., Jarvis T., Tomus D. and Wu X. (2017). "Defect, microstructure, and mechanical property of Ti-6Al-4V alloy fabricated by high-power selective laser melting." The Journal of The Minerals, Metals & Materials Society 69(12): 2684-2692.Cao Y., Li N., Luo Y., Tang H., Xie Q. and Fu A. (2022). "A novel ultra-high strength titanium alloy via hierarchical α/α′ precipitation strengthening." Materials Science and Engineering: A 840: 142878.Chen C., Yin J., Zhu H., Xiao Z., Zhang L. and Zeng X. (2019). "Effect of overlap rate and pattern on residual stress in selective laser melting." International Journal of Machine Tools and Manufacture 145: 103433.Chen J., Fang Q. and Li P. (2015). "Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding." International Journal of Machine Tools and Manufacture 91: 12-23.Chen M., Ma E., Hemker K. J., Sheng H., Wang Y. and Cheng X. J. S. (2003). "Deformation twinning in nanocrystalline aluminum." 300(5623): 1275-1277.Chen Z., Wu X., Tomus D. and Davies C. H. J. (2018). "Surface roughness of Selective Laser Melted Ti-6Al-4V alloy components." Additive Manufacturing 21: 91-103.Cheng J., Fernandez-Zelaia P., Hu X. and Kirka M. (2022). "Effect of microstructure on fatigue crack propagation in additive manufactured nickel-based superalloy Haynes 282: an experiment and crystal plasticity study." Journal of Materials Science 57(21): 9741-9768.Chou Y. K. and Evans C. J. (1999). "White layers and thermal modeling of hard turned surfaces." International Journal of Machine Tools and Manufacture 39(12): 1863-1881.Coghe F., Tirry W., Rabet L., Schryvers D. and Van Houtte P. (2012). "Importance of twinning in static and dynamic compression of a Ti–6Al–4V titanium alloy with an equiaxed microstructure." Materials Science and Engineering: A 537: 1-10.Crocker A. G. and Bevis M. (1970). "The crystallography of deformation twinning in titanium". In R. I. Jaffee and Promisel N. E. (Eds.), The Science, Technology and Application of Titanium (pp. 453-458): Pergamon.Cui C., Hu B., Zhao L. and Liu S. (2011). "Titanium alloy production technology, market prospects and industry development." Materials & Design 32(3): 1684-1691.Dai L. and Song W. (2022). "A strain rate and temperature-dependent crystal plasticity model for hexagonal close-packed (HCP) materials: Application to α-titanium." International Journal of Plasticity 154: 103281.Darnbrough J. E., Roebuck B. and Flewitt P. E. J. J. J. o. A. P. (2015). "The influence of temperature and grain boundary volume on the resistivity of nanocrystalline nickel." 118(18): 675-620.Denkena B., Ben Amor R., De Leon-Garcia L. and Dege J. (2007). "Material specific definition of the high speed cutting range." International Journal of Machining Machinability of Materials 2(2): 176-185.Dewes R. C., Ng E., Chua K. S., Newton P. G. and Aspinwall D. K. (1999). "Temperature measurement when high speed machining hardened mould/die steel." Journal of Materials Processing Technology 92-93: 293-301.Dilberoglu U. M., Gharehpapagh B., Yaman U. and Dolen M. (2017). "The role of additive manufacturing in the era of industry 4.0." Procedia Manufacturing 11: 545-554.Dong Y., Ning J., Dong P., Ren Y. and Zhao S. (2020). "Investigation of Fracture Behavior and Mechanism in High-Speed Precise Shearing for Metal Bars with Prefabricated Fracture-Start Kerfs." Materials 13(18).Du J., Zhang Z., Liu Y., Shao Q., Zhang A., Xiong S. and Liu F. (2023). "Strength-ductility trade-off modulated by thermo-kinetic synergy of heat-treatable aluminum alloys." Journal of Materials Research and Technology 24: 7876-7895.Durai Murugan P., Vijayananth S., Natarajan M. P., Jayabalakrishnan D., Arul K., Jayaseelan V. and Elanchezhian J. (2022). "A current state of metal additive manufacturing methods: A review." Materials Today: Proceedings 59: 1277-1283.Edwards M. (2006). "Properties of metals at high rates of strain." Materials scienceand technology 22(4): 453-462.Facchini L., Magalini E., Robotti P., Molinari A., Höges S. and Wissenbach K. (2010). "Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders." Rapid Prototyping Journal 16(6): 450-459.Fang Z. C., Wu Z. L., Huang C. G. and Wu C. W. (2020). "Review on residual stress in selective laser melting additive manufacturing of alloy parts." Optics & Laser Technology 129: 106283.Fu J., Hu Z., Song X., Zhai W., Long Y., Li H. and Fu M. (2020). "Micro selective laser melting of NiTi shape memory alloy: Defects, microstructures and thermal/mechanical properties." Optics & Laser Technology 131: 106374.Gao C. and Iwamoto T. (2021). "Measurement of transient temperature at super-high-speed deformation." International Journal of Mechanical Sciences 206: 106626.Gao Y. F., Zhang W., Shi P. J., Ren W. L. and Zhong Y. B. (2020). "A mechanistic interpretation of the strength-ductility trade-off and synergy in lamellar microstructures." Materials Today Advances 8: 100103.George J., Philip J. T., Mathew J. and Manu R. (2022). "Prediction and analysis of material removal rate and white layer thickness during wire electrical discharge turning (WEDT) process." CIRP Journal of Manufacturing Science and Technology 39: 210-222.George T. G. I. (2012). "High-Strain-Rate Deformation: Mechanical Behavior and Deformation Substructures Induced." Annual Review of Materials Research 42(1): 285-303.Gibson I., Rosen D. and Stucker B. (2015). "Additive Manufacturing Technologies." Additive Manufacturing Technologies.Gong H., Rafi K., Gu H., Starr T. and Stucker B. (2014). "Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes." Additive Manufacturing 1-4: 87-98.Gray G. T. (1988). "Deformation twinning in Al-4.8 wt% Mg." Acta Metallurgica 36(7): 1745-1754.Greitemeier D., Dalle Donne C., Syassen F., Eufinger J. and Melz T. (2016). "Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V." Materials Science and Technology 32(7): 629-634.Griffiths B. J. (1987). "Mechanisms of White Layer Generation With Reference to Machining and Deformation Processes." Journal of Tribology 109(3): 525-530.Gu L., Kang G., Chen H. and Wang M. (2016). "On adiabatic shear fracture in high-speed machining of martensitic precipitation-hardening stainless steel." Journal of Materials Processing Technology 234: 208-216.Guerra-Yánez H., Florido-Suárez N. R., Voiculescu I. and Mirza-Rosca J. C. (2023). "Corrosion behavior of new titanium alloys for medical applications." Materials Today: Proceedings 72: 533-537.Guo S., Lu S., Zhang B. and Cheung C. F. (2022). "Surface integrity and material removal mechanisms in high-speed grinding of Al/SiCp metal matrix composites." International Journal of Machine Tools and Manufacture 178: 103906.Guo S., Zhang J., Jiang Q. and Zhang B. (2022). "Surface integrity in high-speed grinding of Al6061T6 alloy." CIRP Annals 71(1): 281-284.Guo W., Su J., Lu W., Liebscher C. H., Kirchlechner C., Ikeda Y., Körmann F., Liu X., Xue Y. and Dehm G. (2020). "Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy." Acta Materialia 185: 45-54.Gurrutxaga-Lerma B., Balint D. S., Dini D. and Sutton A. P. (2015). "The mechanisms governing the activation of dislocation sources in aluminum at different strain rates." Journal of the Mechanics and Physics of Solids 84: 273-292.Gurrutxaga–Lerma B., Verschueren J., Sutton A. P. and Dini D. (2021). "The mechanics and physics of high-speed dislocations: a critical review." International Materials Reviews 66(4): 215-255.Guy S. and Gary L. (2013). "Very high speed cutting of Ti-6Al-4V titanium alloy - Change in morphology and mechanism of chip formation." International Journal of Machine Tools and Manufacture 66: 37–43.Habrat W., Markopoulos A. P., Motyka M. and Sieniawski J. (2019). "Chapter 11 - Machinability". In H. Garbacz, Semenova I. P., Zherebtsov S. and Motyka M. (Eds.), Nanocrystalline Titanium (pp. 209-236): Elsevier.Han J., Yang J., Yu H., Yin J., Gao M., Wang Z. and Zeng X. (2017). "Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density." Rapid Prototyping Journal 23(2): 217-226.Han Q., Li J. and Yi X. (2023). "Overcoming strength–ductility trade-off of nanocrystalline metals by engineering grain boundary, texture, and gradient microstructure." Journal of the Mechanics and Physics of Solids 173: 105200.He B., Wu W., Zhang L., Lu L., Yang Q., Long Q. and Kun C. (2018). "Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting." Vacuum 150: 79-83.He J., Li D., Jiang W., Ke L., Qin G., Ye Y., Qin Q. and Qiu D. (2019). "The Martensitic Transformation and Mechanical Properties of Ti6Al4V Prepared via Selective Laser Melting." Materials 12(2): 321.Hiratani M. and Nadgorny E. M. (2001). "Combined model of dislocation motion with thermally activated and drag-dependent stages." Acta Materialia 49(20): 4337-4346.Hollander D. A., Walter M. V., Wirtz T., Sellei R., Schmidt-Rohlfing B., Paar O. and Erli H. J. (2006). "Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming." Biomaterials 27(7): 955-963.Hopkinson N. and Mumtaz K. "Top surface and side roughness of Inconel 625 parts processed using selective laser melting." Rapid Prototyping Journal 2009(15): 96-103.Hu H., Xu Z., Dou W. and Huang F. (2020). "Effects of strain rate and stress state on mechanical properties of Ti-6Al-4V alloy." International Journal of Impact Engineering 145: 103689.Huang K. and Logé R. E. (2016). "A review of dynamic recrystallization phenomena in metallic materials." Materials & Design 111: 548-574.Jamil M., He N., Gupta M. K., Zhao W. and Khan A. M. (2022). "Tool wear mechanisms and its influence on machining tribology of face milled titanium alloy under sustainable hybrid lubri-cooling." Tribology International 170: 107497.Javidi A., Rieger U. and Eichlseder W. (2008). "The effect of machining on the surface integrity and fatigue life." International Journal of Fatigue 30(10): 2050-2055.Jiang Q., Li S., Guo S., Fu M. and Zhang B. (2023). "Comparative study on process-structure-property relationships of TiC/Ti6Al4V and Ti6Al4V by selective laser melting." International Journal of Mechanical Sciences 241: 107963.Johnson G. R. and Cook W. H. (1985). "Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures." Engineering Fracture Mechanics 21(1): 31-48.Jung H., Hayasaka T., Shamoto E. and Xu L. (2020). "Suppression of forced vibration due to chip segmentation in ultrasonic elliptical vibration cutting of titanium alloy Ti–6Al–4V." Precision Engineering 64: 98-107.Kalantari O., Jafarian F. and Fallah M. M. (2021). "Comparative investigation of surface integrity in laser assisted and conventional machining of Ti-6Al-4 V alloy." Journal of Manufacturing Processes 62: 90-98.Karimi J., Suryanarayana C., Okulov I. and Prashanth K. G. (2021). "Selective laser melting of Ti6Al4V: Effect of laser re-melting." Materials Science and Engineering: A 805: 140558.Khairallah S. A., Martin A. A., Lee J. R., Guss G., Calta N. P., Hammons J. A., Nielsen M. H., Chaput K., Schwalbach E. and Shah M. N. (2020). "Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing." Science 368(6491): 660-665.Khaliq W., Zhang C., Jamil M. and Khan A. M. (2020). "Tool wear, surface quality, and residual stresses analysis of micro-machined additive manufactured Ti–6Al–4V under dry and MQL conditions." Tribology International 151: 106408.Khanna N., Zadafiya K., Patel T., Kaynak Y., Rahman Rashid R. A. and Vafadar A. (2021). "Review on machining of additively manufactured nickel and titanium alloys." Journal of Materials Research and Technology 15: 3192-3221.Kim S., Kim H., Kang K. and Kim S. Y. (2020). "Relativistic effect inducing drag on fast-moving dislocation in discrete system." International Journal of Plasticity 126: 102629.Kishawy H. and Elbestawi M. (2001). "Tool wear and surface integrity during high-speed turning of hardened steel with polycrystalline cubic boron nitride tools." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 215(6): 755-767.Kishawy H. A., Nguyen N., Hosseini A. and Elbestawi M. (2023). "Machining characteristics of additively manufactured titanium, cutting mechanics and chip morphology." CIRP Annals 72(1): 49-52.Kitagawa T., Kubo A. and Maekawa K. (1997). "Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti6Al6V2Sn." Wear 202(2): 142-148.Kobryn P. A. and Semiatin S. L. (2001). "The laser additive manufacture of Ti-6Al-4V." JOM Journal of the Minerals Metals and Materials Society 53(9): 40-42.Komanduri R. and Reed Jr W. (1983). "Evaluation of carbide grades and a new cutting geometry for machining titanium alloys." Wear 92(1): 113-123.Kumar P., Prakash O. and Ramamurty U. (2018). "Micro-and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V." Acta Materialia 154: 246-260.Kuntoğlu M., Salur E., Canli E., Aslan A., Gupta M. K., Waqar S., Krolczyk G. M. and Xu J. (2023). "A state of the art on surface morphology of selective laser-melted metallic alloys." The International Journal of Advanced Manufacturing Technology 127(3): 1103-1142.Kuruc M., Vopát T., Peterka J., Necpal M., Šimna V., Milde J. and Jurina F. (2022). "The influence of cutting parameters on plastic deformation and chip compression during the turning of C45 medium carbon steel and 62SiMnCr4 tool steel." Materials 15(2): 585.la Monaca A., Axinte D. A., Liao Z., M'Saoubi R. and Hardy M. C. (2022). "Temperature-dependent shear localisation and microstructural evolution in machining of nickel-base superalloys." Materials & Design 219: 110792.la Monaca A., Murray J. W., Liao Z., Speidel A., Robles-Linares J. A., Axinte D. A., Hardy M. C. and Clare A. T. (2021). "Surface integrity in metal machining - Part II: Functional performance." International Journal of Machine Tools and Manufacture 164: 103718.Le Coz G., Piquard R., D’Acunto A., Bouscaud D., Fischer M. and Laheurte P. (2020). "Precision turning analysis of Ti-6Al-4V skin produced by selective laser melting using a design of experiment approach." The International Journal of Advanced Manufacturing Technology 110: 1615-1625.Lee W.-S., Lin C.-F. and Liu T.-J. (2007). "Impact and fracture response of sintered 316L stainless steel subjected to high strain rate loading." Materials Characterization 58(4): 363-370.Lewandowski J. J. and Seifi M. (2016). "Metal Additive Manufacturing: A Review of Mechanical Properties." Annual Review of Materials Research 46: 151–186.Li B., Zhang S., Du J. and Sun Y. (2022). "State-of-the-art in cutting performance and surface integrity considering tool edge micro-geometry in metal cutting process." Journal of Manufacturing Processes 77: 380-411.Li G., Chandra S., Rahman Rashid R. A., Palanisamy S. and Ding S. (2022). "Machinability of additively manufactured titanium alloys: A comprehensive review." Journal of Manufacturing Processes 75: 72-99.Li G., Ma F., Liu P., Qi S., Li W., Zhang K. and Chen X. (2023). "Review of micro-arc oxidation of titanium alloys: Mechanism, properties and applications." Journal of Alloys and Compounds 948: 169773.Li G., Xu W., Jin X., Liu L., Ding S. and Li C. (2023). "The machinability of stainless steel 316 L fabricated by selective laser melting: Typical cutting responses, white layer and evolution of chip morphology." Journal of Materials Processing Technology 315: 117926.Li J., Xie D. Y., Xue S., Fan C., Chen Y., Wang H., Wang J. and Zhang X. (2018). "Superior twin stability and radiation resistance of nanotwinned Ag solid solution alloy." Acta Materialia 151: 395-405.Li K., Yang T., Gong N., Wu J., Wu X., Zhang D. Z. and Murr L. E. (2023). "Additive manufacturing of ultra-high strength steels: A review." Journal of Alloys and Compounds 965: 171390.Li L., Zhang Z., Zhang P. and Zhang Z. (2023). "A review on the fatigue cracking of twin boundaries: Crystallographic orientation and stacking fault energy." Progress in Materials Science 131: 101011.Li M., Karpuschewski B., Ohmori H., Riemer O., Wang Y. and Dong T. (2021). "Adaptive shearing-gradient thickening polishing (AS-GTP) and subsurface damage inhibition." International Journal of Machine Tools and Manufacture 160: 103651.Li X., Zhang Z. and Wang J. (2023). "Deformation twinning in body-centered cubic metals and alloys." Progress in Materials Science: 101160.Lian F., Chen L., Wu C., Zhao Z., Tang J. and Zhu J. (2023). "Selective Laser Melting Additive Manufactured Tantalum: Effect of Microstructure and Impurities on the Strengthening-Toughing Mechanism." Materials 16(8): 3161.Liang X. and Liu Z. (2017). "Experimental investigations on effects of tool flank wear on surface integrity during orthogonal dry cutting of Ti-6Al-4V." The International Journal of Advanced Manufacturing Technology 93(5): 1617-1626.Liang X., Liu Z. and Wang B. (2020). "Dynamic recrystallization characterization in Ti-6Al-4V machined surface layer with process-microstructure-property correlations." Applied Surface Science 530: 147184.Liang X., Liu Z. and Wang B. (2019). "State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: A review." Measurement 132: 150-181.Liao Z., la Monaca A., Murray J., Speidel A., Ushmaev D., Clare A., Axinte D. and M'Saoubi R. (2021). "Surface integrity in metal machining - Part I: Fundamentals of surface characteristics and formation mechanisms." International Journal of Machine Tools and Manufacture 162: 103687.Liao Z., Polyakov M., Diaz O. G., Axinte D., Mohanty G., Maeder X., Michler J. and Hardy M. (2019). "Grain refinement mechanism of nickel-based superalloy by severe plastic deformation - Mechanical machining case." Acta Materialia 180: 2-14.Liu C. and Ahrens T. (1997). "Stress wave attenuation in shock‐damaged rock." Journal of Geophysical Research: Solid Earth 102(B3): 5243-5250.Liu J., Sun Q., Zhou C. A., Wang X., Li H., Guo K. and Sun J. (2019). "Achieving Ti6Al4V alloys with both high strength and ductility via selective laser melting." Materials Science and Engineering: A 766: 138319.Liu M., Wang P., Lu G., Huang C.-Y., You Z., Wang C.-H. and Yen H.-W. (2022). "Deformation-activated recrystallization twin: New twinning path in pure aluminum enabled by cryogenic and rapid compression." iScience 25(5): 104248.Liu Y., Lu C., Wang H., Tieu A. K. and Liu B. (2020). "Microstructure evolution, lattice rotation retardation and grain orientation fragmentation in commercial purity aluminium deformed by high pressure torsion." Journal of Materials Research and Technology 9(3): 6642-6654.Liu Y., Yang Y. and Wang D. (2016). "A study on the residual stress during selective laser melting (SLM) of metallic powder." International Journal of Advanced Manufacturing Technology 87(1-4): 1-10.Liu Z., Xu J., Han S. and Chen M. (2013). "A coupling method of response surfaces (CRSM) for cutting parameters optimization in machining titanium alloy under minimum quantity lubrication (MQL) condition." International Journal of Precision Engineering Manufacturing 14: 693-702.Longbottom J. M. and Lanham J. D. (2006). "A review of research related to Salomon's hypothesis on cutting speeds and temperatures." International Journal of Machine Tools and Manufacture 46(14): 1740-1747.Lu J. and Zhuo L. (2023). "Additive manufacturing of titanium alloys via selective laser melting: Fabrication, microstructure, post-processing, performance and prospect." International Journal of Refractory Metals and Hard Materials 111: 106110.Luqman M., Ali Y., Zaghloul M. M. Y., Sheikh F. A., Chan V. and Abdal-hay A. (2023). "Grain refinement mechanism and its effect on mechanical properties and biodegradation behaviors of Zn alloys – A review." Journal of Materials Research and Technology 24: 7338-7365.Ma W., Chen X. and Shuang F. (2017). "The chip-flow behaviors and formation mechanisms in the orthogonal cutting process of Ti6Al4V alloy." Journal of the Mechanics and Physics of Solids 98: 245-270.Malakizadi A., Mallipeddi D., Dadbakhsh S., M'Saoubi R. and Krajnik P. (2022). "Post-processing of additively manufactured metallic alloys – A review." International Journal of Machine Tools and Manufacture 179: 103908.Mele M., Bergmann A., Campana G. and Pilz T. (2021). "Experimental investigation into the effect of supports and overhangs on accuracy and roughness in laser powder bed fusion." Optics & Laser Technology 140: 107024.Meng L. X., Yang H. J., Ben D. D., Ji H. B., Lian D. L., Ren D. C., Li Y., Bai T. S., Cai Y. S., Chen J., Yi J. L., Wang L., Yang J. B. and Zhang Z. F. (2022). "Effects of defects and microstructures on tensile properties of selective laser melted Ti6Al4V alloys fabricated in the optimal process zone." Materials Science and Engineering: A 830: 142294.Meyers M. A., Vöhringer O. and Lubarda V. A. (2001). "The onset of twinning in metals: a constitutive description." Acta Materialia 49(19): 4025-4039.Mills M. J. and Neeraj T. (2001). "Dislocations in Metals and Metallic Alloys". In K. H. J. Buschow, Cahn R. W., Flemings M. C., Ilschner B., Kramer E. J., Mahajan S. and Veyssière P. (Eds.), Encyclopedia of Materials: Science and Technology (pp. 2278-2291). Oxford: Elsevier.Ming W., Chen J., An Q. and Chen M. (2019). "Dynamic mechanical properties and machinability characteristics of selective laser melted and forged Ti6Al4V." Journal of Materials Processing Technology 271: 284-292.Mishra S. K., Talwar D., Singh K., Chopra A., Ghosh S. and Aravindan S. (2021). "Micromechanical characterization and dynamic wear study of DC-Arc coated cemented carbide cutting tools for dry titanium turning." Ceramics International 47(22): 31798-31810.Mogilevsky M. and Newman P. (1983). "Mechanisms of deformation under shock loading." Physics Reports 97(6): 357-393.Moridi A., Demir A. G., Caprio L., Hart A. J., Previtali B. and Colosimo B. M. (2019). "Deformation and failure mechanisms of Ti–6Al–4V as built by selective laser melting." Materials Science and Engineering: A 768: 138456.Motoyama Y., Tokunaga H., Kajino S. and Okane T. (2021). "Stress–strain behavior of a selective laser melted Ti-6Al-4V at strain rates of 0.001–1/s and temperatures 20–1000 °C." Journal of Materials Processing Technology 294: 117141.Muthuramalingam T., Akash R., Krishnan S., Phan N. H., Pi V. N. and Elsheikh A. H. (2021). "Surface quality measures analysis and optimization on machining titanium alloy using CO2 based laser beam drilling process." Journal of Manufacturing Processes 62: 1-6.Naskar A., Choudhary A. and Paul S. (2020). "Wear mechanism in high-speed superabrasive grinding of titanium alloy and its effect on surface integrity." Wear 462-463: 203475.Nguyen H. D., Pramanik A., Basak A. K., Dong Y., Prakash C., Debnath S., Shankar S., Jawahir I. S., Dixit S. and Buddhi D. (2022). "A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties." Journal of Materials Research and Technology 18: 4641-4661.Ni C., Zhu L., Zheng Z., Zhang J., Yang Y., Hong R., Bai Y., Lu W. F. and Wang H. (2020). "Effects of machining surface and laser beam scanning strategy on machinability of selective laser melted Ti6Al4V alloy in milling." Materials & Design 194: 108880.Nicolò Maria d. V., Peter S., Amit S., Manish J. and Cinzia P. (2023). "Micromechanical response of pure magnesium at different strain rate and temperature conditions: twin to slip and slip to twin transitions." Acta Materialia 243: 118528.Niinomi M. (2019). "Titanium Alloys". In R. Narayan (Ed.), Encyclopedia of Biomedical Engineering (pp. 213-224). Oxford: Elsevier.Niknam S. A., Khettabi R. and Songmene V. (2014). "Machinability and Machining of Titanium Alloys: A Review". In J. P. Davim (Ed.), Machining of Titanium Alloys (pp. E1-E1). Berlin, Heidelberg: Springer Berlin Heidelberg.Niu Q., Rong J., Jing L., Gao H., Tang S., Qiu X., Liu L., Wang X. and Dai F. (2023). "Study on force-thermal characteristics and cutting performance of titanium alloy milled by ultrasonic vibration and minimum quantity lubrication." Journal of Manufacturing Processes 95: 115-130.Oda H., Nishizawa O., Kusunose K. i. and Hirata T. (1990). "Frequency-dependence of velocity and attenuation of elastic waves in granite under uniaxial compression." Pure and Applied Geophysics 133(1): 73-85.Oke S. R., Ogunwande G. S., Onifade M., Aikulola E., Adewale E. D., Olawale O. E., Ayodele B. E., Mwema F., Obiko J. and Bodunrin M. O. (2020). "An overview of conventional and non-conventional techniques for machining of titanium alloys." Manufacturing Review 7: 34.Olakanmi E. O., Cochrane R. F. and Dalgarno K. W. (2015). "A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties." Progress in Materials Science 74: 401-477.Opoz T. and Chen X. (2016). "Chip Formation Mechanism Using Finite Element Simulation." Journal of Mechanical Engineering 62: 636-646.Pal S., Lojen G., Hudak R., Rajtukova V., Brajlih T., Kokol V. and Drstvenšek I. (2020). "As-fabricated surface morphologies of Ti-6Al-4V samples fabricated by different laser processing parameters in selective laser melting." Additive Manufacturing 33: 101147.Pan H., He Y. and Zhang X. (2021). "Interactions between dislocations and boundaries during deformation." Materials 14(4): 1012.Pan Z., Feng Y. and Liang S. Y. (2017). "Material microstructure affected machining: a review." Manufacturing Review 4: 5.Pantawane M. V., Sharma S., Sharma A., Dasari S., Banerjee S., Banerjee R. and Dahotre N. B. (2021). "Coarsening of martensite with multiple generations of twins in laser additively manufactured Ti6Al4V." Acta Materialia 213: 116954.Parameswaran V. R., Urabe N. and Weertman J. (2003). "Dislocation Mobility in Aluminum." Journal of Applied Physics 43(7): 2982-2986.Paton N. E. and Backofen W. A. (1970). "Plastic deformation of titanium at elevated temperatures." Metallurgical Transactions 1(10): 2839-2847.Pawade R. S., Joshi S. S., Brahmankar P. K. (2008). "Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718." International Journal of Machine Tools and Manufacture 48(1): 15-28.Polishetty A., Shunmugavel M., Goldberg M., Littlefair G. and Singh R. K. (2017). "Cutting Force and Surface Finish Analysis of Machining Additive Manufactured Titanium Alloy Ti-6Al-4V." Procedia Manufacturing 7: 284-289.Pramanik A. (2014). "Problems and solutions in machining of titanium alloys." The International Journal of Advanced Manufacturing Technology 70(5): 919-928.Pramanik A. and Littlefair G. (2015). "Machining of Titanium Alloy (Ti-6Al-4V)-Theory to Application." Machining Science and Technology 19(1/2): 1-49.Pushp P., Dasharath S. M. and Arati C. (2022). "Classification and applications of titanium and its alloys." Materials Today: Proceedings 54: 537-542.Qi Y. W., Luo Z. P., Li X. Y. and Lu K. (2022). "Transition of deformation mechanisms from twinning to dislocation slip in nanograined pure cobalt." Journal of Materials Science & Technology 121: 124-129.Qiao K., Wang K., Wang J., Hao Z., Xiang Y., Han P., Cai J., Yang Q. and Wang W. (2024). "Microstructural evolution and deformation behavior of friction stir welded twin-induced plasticity steel." Journal of Materials Science & Technology 169: 68-81.Rafi H. K., Karthik N. V., Gong H., Starr T. L. and Stucker B. E. (2013). "Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting." Journal of Materials Engineering and Performance 22(12): 3872-3883.Rasmussen C. J., Fæster S., Dhar S., Quaade J. V., Bini M. and Danielsen H. K. (2017). "Surface crack formation on rails at grinding induced martensite white etching layers." Wear 384-385: 8-14.Regazzoni G., Kocks U. F. and Follansbee P. S. (1987). "Dislocation kinetics at high strain rates." Acta Metallurgica 35(12): 2865-2875.Ren-Guo Guan D. T. (2017). "A Review on Grain Refinement of Aluminum Alloys: Progresses, Challenges and Prospects." Acta Metallurgica Sinica (English Letters) 30(5): 409-432.Rida A., Micoulaut M., Rouhaud E. and Makke A. (2020). "Understanding the strain rate sensitivity of nanocrystalline copper using molecular dynamics simulations." Computational Materials Science 172: 109294.Rosi F. D. (1957). "Twin intersections in titanium." Acta Metallurgica 5(6): 337-339.Rotella G., Imbrogno S., Candamano S. and Umbrello D. (2018). "Surface integrity of machined additively manufactured Ti alloys." Journal of Materials Processing Technology 259: 180-185.Salvado F. C., Teixeira-Dias F., Walley S. M., Lea L. J. and Cardoso J. B. (2017). "A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals." Progress in Materials Science 88: 186-231.Schulz H. and Moriwaki T. (1992). "High-speed Machining." CIRP Annals 41(2): 637-643.Sefene E. M. (2022). "State-of-the-art of selective laser melting process: A comprehensive review." Journal of Manufacturing Systems 63: 250-274.Shi K., Ren J., Zhang D., Zhai Z. and Huang X. (2017). "Tool wear behaviors and its effect on machinability in dry high-speed milling of magnesium alloy." The International Journal of Advanced Manufacturing Technology 90: 3265-3273.Shunmugavel M., Goldberg M., Polishetty A., Nomani J., Sun S. and Littlefair G. (2019). "Chip formation characteristics of selective laser melted Ti–6Al–4V." Australian Journal of Mechanical Engineering 17(2): 109-126.Siju A. S., Jose S. and Waigaonkar S. D. (2022). "Experimental analysis and characterisation of chip segmentation in dry machining of Ti-6Al-4V alloy using inserts with hybrid textures." CIRP Journal of Manufacturing Science and Technology 36: 213-226.Singla A. K., Banerjee M., Sharma A., Singh J., Bansal A., Gupta M. K., Khanna N., Shahi A. S. and Goyal D. K. (2021). "Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments." Journal of Manufacturing Processes 64: 161-187.Srivastava M., Rathee S., Patel V., Kumar A. and Koppad P. (2022). "A review of various materials for additive manufacturing: Recent trends and processing issues." Journal of Materials Research and Technology 21: 2612-2641.Stef J., Poulon-Quintin A., Redjaimia A., Ghanbaja J., Ferry O., De Sousa M. and Gouné M. (2018). "Mechanism of porosity formation and influence on mechanical properties in selective laser melting of Ti-6Al-4V parts." Materials & Design 156: 480-493.Stepanov N., Tikhonovsky M., Yurchenko N., Zyabkin D. and Salishchev G. J. I. (2015). "Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy." 59: 8-17.Sun C., Guo N., Fu M. and Wang S. (2016). "Modeling of slip, twinning and transformation induced plastic deformation for TWIP steel based on crystal plasticity." International Journal of Plasticity 76: 186-212.Sun J. and Guo Y. B. (2009). "Material flow stress and failure in multiscale machining titanium alloy Ti-6Al-4V." The International Journal of Advanced Manufacturing Technology 41(7): 651-659.Sun J. L., Trimby P. W., Yan F. K., Liao X. Z., Tao N. R. and Wang J. T. (2013). "Grain size effect on deformation twinning propensity in ultrafine-grained hexagonal close-packed titanium." Scripta Materialia 69(5): 428-431.Sun K., Yu X., Tan C., Ma H., Wang F. and Cai H. (2014). "Effect of microstructure on adiabatic shear band bifurcation in Ti–6Al–4V alloys under ballistic impact." Materials Science and Engineering: A 595: 247-256.Sun S., Brandt M. and Dargusch M. S. (2009). "Characteristics of cutting forces and chip formation in machining of titanium alloys." International Journal of Machine Tools and Manufacture 49(7): 561-568.Sun Z., To S. and Yu K. (2019). "An investigation in the ultra-precision fly cutting of freeform surfaces on brittle materials with high machining efficiency and low tool wear." The International Journal of Advanced Manufacturing Technology 101: 1583-1593.Sutter G. and List G. (2013). "Very high speed cutting of Ti-6A1-4V titanium alloy - change in morphology and mechanism of chip formation." International Journal of Machine Tools and Manufacture 66: 37-43.Sutter G. and List G. (2013). "Very high speed cutting of Ti–6Al–4V titanium alloy – change in morphology and mechanism of chip formation." International Journal of Machine Tools and Manufacture 66: 37-43.Tang M. X., Li C., Cai Y. and Luo S. N. (2022). "Deformation twinning to dislocation slip transition in single-crystal tantalum under dynamic compression." Journal of Materials Science 57(10): 6026-6038.Tang Y., Wang R., Xiao B., Zhang Z., Li S., Qiao J., Bai S., Zhang Y. and Liaw P. K. (2023). "A review on the dynamic-mechanical behaviors of high-entropy alloys." Progress in Materials Science 135: 101090.Thijs L., Verhaeghe F., Craeghs T., Humbeeck J. V. and Kruth J.-P. (2010). "A study of the microstructural evolution during selective laser melting of Ti–6Al–4V." Acta Materialia 58(9): 3303-3312.Tiamiyu A. A., Pang E. L., Chen X., LeBeau J. M., Nelson K. A. and Schuh C. A. (2022). "Nanotwinning-assisted dynamic recrystallization at high strains and strain rates." Nature Materials 21(7): 786-794.Tian Y., Ren F. and Chen F. (2022). "Twin-boundary-spacing-dependent strength in gradient nano-grained copper." Materials Today Communications 33: 104836.Tofail S. A., Koumoulos E. P., Bandyopadhyay A., Bose S., O’Donoghue L. and Charitidis C. (2018). "Additive manufacturing: scientific and technological challenges, market uptake and opportunities." Materials Today 21(1): 22-37.Tönshoff H., Karpuschewski B., Lapp C. and Andrae P. (1998). New machine techniques for high-speed machining. Paper presented at the International Seminar on improving Machine Tool Performance.Trent E. M. and Wright P. K. (2000). "Metal cutting." Butterworth-Heinemann.Tuffentsammer K. and Icks G. (1982). Lathe criteria for the turning at ultra-high cutting speeds. Paper presented at the Proc. 10th NAMRC.Van Belle L., Vansteenkiste G. and Boyer J. C. (2013). "Investigation of Residual Stresses Induced during the Selective Laser Melting Process." Key Engineering Materials 554-557: 1828-1834.Velásquez J. D. P., Tidu A., Bolle B., Chevrier P. and Fundenberger J. J. (2010). "Sub-surface and surface analysis of high speed machined Ti–6Al–4V alloy." Materials Science and Engineering: A 527(10): 2572-2578.Veldhuis S. C., Dosbaeva G. K., Elfizy A., Fox-Rabinovich G. S., Wagg T. and Performance (2010). "Investigations of White Layer Formation During Machining of Powder Metallurgical Ni-Based ME 16 Superalloy." Journal of Materials Engineering & Performance 19(7): 1031-1036.Venkata Rao R. (2006). "Machinability evaluation of work materials using a combined multiple attribute decision-making method." The International Journal of Advanced Manufacturing Technology 28(3): 221-227.Vinogradov A., Vasilev E., Linderov M. and Merson D. (2016). "In situ observations of the kinetics of twinning–detwinning and dislocation slip in magnesium." Materials Science and Engineering: A 676: 351-360.Vrancken B., Thijs L., Kruth J. P. and Humbeeck J. V. (2012). "Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties." Journal of Alloys and Compounds 541: 177-185.Wan Z. P., Zhu Y. E., Liu H. W. and Tang Y. (2012). "Microstructure evolution of adiabatic shear bands and mechanisms of saw-tooth chip formation in machining Ti6Al4V." Materials Science and Engineering: A 531: 155-163.Wang B. and Liu Z. (2015). "Shear localization sensitivity analysis for Johnson–Cook constitutive parameters on serrated chips in high speed machining of Ti6Al4V." Simulation Modelling Practice and Theory 55: 63-76.Wang B., Liu Z., Cai Y., Luo X., Ma H., Song Q. and Xiong Z. (2021). "Advancements in material removal mechanism and surface integrity of high speed metal cutting: A review." International Journal of Machine Tools and Manufacture 166: 103744.Wang B., Liu Z., Su G. and Ai X. (2015). "Brittle removal mechanism of ductile materials with ultrahigh-speed machining." Journal of Manufacturing Science and Engineering 137(6): 061002.Wang B., Liu Z., Su G., Song Q. and Ai X. (2015). "Investigations of critical cutting speed and ductile-to-brittle transition mechanism for workpiece material in ultra-high speed machining." International Journal of Mechanical Sciences 104: 44-59.Wang C, Fang Q, Chen J and Y L. (2016). "Subsurface damage in high-speed grinding of brittle materials considering kinematic characteristics of the grinding process %J International Journal of Advanced Manufacturing Technology." 83(5-8): 937-948.Wang Q. and Liu Z. (2016). "Plastic deformation induced nano-scale twins in Ti-6Al-4V machined surface with high speed machining." Materials Science and Engineering: A 675: 271-279.Wang T., Li B., Li M., Li Y., Wang Z. and Nie Z. (2015). "Effects of strain rates on deformation twinning behavior in α-titanium." Materials Characterization 106: 218-225.Wang X. and Chou K. (2018). "EBSD study of beam speed effects on Ti-6Al-4V alloy by powder bed electron beam additive manufacturing." Journal of Alloys and Compounds 748: 236-244.Wang X. X., Zhan M., Gao P. F., Ma P. Y., Yang K., Lei Y. D. and Li Z. X. (2020). "Deformation mode dependent mechanism and kinetics of dynamic recrystallization in hot working of titanium alloy." Materials Science and Engineering: A 772: 138804.Waqar S., Guo K. and Sun J. (2022). "Evolution of residual stress behavior in selective laser melting (SLM) of 316L stainless steel through preheating and in-situ re-scanning techniques." Optics & Laser Technology 149: 107806.Wei Y., Chen G., Li W., Li M., Zhou Y., Nie Z. and Xu J. (2022). "Process optimization of micro selective laser melting and comparison of different laser diameter for forming different powder." Optics & Laser Technology 150: 107953.Wu T., Liu C., Chang L., Wang H., Zhang L. and Zhou X. (2023). "Understanding the surface grain refinement mechanisms for type 316L stainless steel during machining process via advanced microstructure characterization." Materialia 31: 101866.Wu X., Li L., Liu W., Li S., Zhang L. and He H. (2018). "Development of adiabatic shearing bands in 7003-T4 aluminum alloy under high strain rate impacting." Materials Science and Engineering: A 732: 91-98.Xiao Z., Chen C., Zhu H., Hu Z., Nagarajan B., Guo L. and Zeng X. (2020). "Study of residual stress in selective laser melting of Ti6Al4V." Materials & Design 193: 108846.Xing X., Yu M., Chen W. and Zhang H. J. C. M. S. (2017). "Atomistic simulation of hydrogen-assisted ductile-to-brittle transition in α-iron." 127: 211-221.Xu W., Brandt M., Sun S., Elambasseril J., Liu Q., Latham K., Xia K. and Qian M. (2015). "Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition." Acta Materialia 85: 74-84.Xu W., Lui E. W., Pateras A., Qian M. and Brandt M. (2017). "In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance." Acta Materialia 125: 390-400.Xu W., Sun S., Elambasseril J., Liu Q., Brandt M. and Qian M. (2015). "Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties." JOM 67(3): 668-673.Xu X., Zhang J., Liu H., He Y. and Zhao W. (2019). "Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining Ti6Al4V." Materials Science and Engineering: A 752: 167-179.Xuan C. (2023). "A study of microstructural factors governing strength and ductility of titanium alloys fabricated by powder bed fusion additive manufacturing." Journal of Alloys and Compounds 952: 170094.Yadroitsev I. and Yadroitsava I. (2015). "Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting." Virtual Physical Prototyping 10(2): 67-76.Yan N., Li Z., Xu Y. and Meyers M. A. (2021). "Shear localization in metallic materials at high strain rates." Progress in Materials Science 119: 100755.Yang D. and Liu Z. (2015). "Surface topography analysis and cutting parameters optimization for peripheral milling titanium alloy Ti–6Al–4V." International Journal of Refractory Metals and Hard Materials 51: 192-200.Yang X. and Zhang B. (2019). "Material embrittlement in high strain-rate loading." International Journal of Extreme Manufacturing 1(2): 022003.Yang Z., Yang M., Ma Y., Zhou L., Cheng W., Yuan F. and Wu X. (2020). "Strain rate dependent shear localization and deformation mechanisms in the CrMnFeCoNi high-entropy alloy with various microstructures." Materials Science and Engineering: A 793: 139854.Yao Z., Yang T., Yang M., Jia X., Wang C., Yu J., Li Z., Han H., Liu W., Xie G., Yang S., Zhang Q., Wang C., Wang S. and Liu X. (2022). "Martensite colony engineering: A novel solution to realize the high ductility in full martensitic 3D-printed Ti alloys." Materials & Design 215: 110445.Ye G. G., Xue S. F., Jiang M. Q., Tong X. H. and Dai L. H. (2013). "Modeling periodic adiabatic shear band evolution during high speed machining Ti-6Al-4V alloy." International Journal of Plasticity 40: 39-55.Ye G. G., Xue S. F., Ma W. and Dai L. H. (2017). "Onset and evolution of discontinuously segmented chip flow in ultra-high-speed cutting Ti-6Al-4V." The International Journal of Advanced Manufacturing Technology 88(1): 1161-1174.Ye T., Zhao F., Chen L., Jiang K., Deng Q., Chen Y., Wang Q. and Suo T. (2021). "Effect of strain rate and low temperature on mechanical behaviour and microstructure evolution in twinning-induced plasticity steel." Materials Science and Engineering: A 823: 141734.Zafari A., Barati M. R. and Xia K. (2018). "Controlling martensitic decomposition during selective laser melting to achieve best ductility in high strength Ti-6Al-4V." Materials Science and Engineering: A 744: 445-455.Zepeda-Ruiz L. A., Stukowski A., Oppelstrup T. and Bulatov V. V. (2017). "Probing the limits of metal plasticity with molecular dynamics simulations." Nature 550(7677): 492-495.Zhang B. and Howes T. D. J. C. A.-M. T. (1994). "Material-Removal Mechanisms in Grinding Ceramics." 43(1): 305-308.Zhang B., Li Y. and Bai Q. (2017). "Defect Formation Mechanisms in Selective Laser Melting: A Review." Chinese Journal of Mechanical Engineering 30(3): 515-527.Zhang B. and Yin J. F. (2019). "The ‘skin effect’ of subsurface damage distribution in materials subjected to high-speed machining." International Journal of Extreme Manufacturing 1(1).Zhang C., Zou D., Mazur M., Mo J. P. T., Li G. and Ding S. (2023). "The State of the Art in Machining Additively Manufactured Titanium Alloy Ti-6Al-4V." Materials 16(7): 2583.Zhang M., Ng C.-H., Dehghan-Manshadi A., Hall C., Bermingham M. J. and Dargusch M. S. (2023). "Towards isotropic behaviour in Ti–6Al–4V fabricated with laser powder bed fusion and super transus hot isostatic pressing." Materials Science and Engineering: A 874: 145094.Zhang P., Liu Z., Du J., Su G., Zhang J. and Xu C. (2020). "On machinability and surface integrity in subsequent machining of additively-manufactured thick coatings: A review." Journal of Manufacturing Processes 53: 123-143.Zhang S., Liu Z., Wang B., Ren X., Khan A. M. and Zhao M. (2021). "Phase transition and dynamic recrystallization mechanisms of white layer formation during turning superalloy Inconel 718." Journal of Materials Research and Technology 15: 5288-5296.Zhang X., Peng Z., Li Z., Sui H. and Zhang D. (2020). "Influences of machining parameters on tool performance when high-speed ultrasonic vibration cutting titanium alloys." Journal of Manufacturing Processes 60: 188-199.Zhang X. P., Shivpuri R. and Srivastava A. K. (2014). "Role of phase transformation in chip segmentation during high speed machining of dual phase titanium alloys." Journal of Materials Processing Technology 214(12): 3048-3066.Zhang Y., Lee Y. J., Chang S., Chen Y., Bai Y., Zhang J. and Wang H. (2022). "Microstructural modulation of TiAl alloys for controlling ultra-precision machinability." International Journal of Machine Tools and Manufacture 174: 103851.Zhang Z., Huang S., Chen L., Zhu Z. and Guo D. (2017). "Formation mechanism of fivefold deformation twins in a face-centered cubic alloy." Scientific Reports 7(1): 45405.Zhao C., Parab N. D., Li X., Fezzaa K., Tan W., Rollett A. D. and Sun T. (2020). "Critical instability at moving keyhole tip generates porosity in laser melting." Science 370(6520): 1080-1086.Zhao Q., Sun Q., Xin S., Chen Y., Wu C., Wang H., Xu J., Wan M., Zeng W. and Zhao Y. (2022). "High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process." Materials Science and Engineering: A 845: 143260.Zhong H. Z., Zhang X. Y., Wang S. X. and Gu J. F. (2018). "Examination of the twinning activity in additively manufactured Ti-6Al-4V." Materials & Design 144: 14-24.Zhong X., Huang L. and Liu F. (2020). "Discontinuous Dynamic Recrystallization Mechanism and Twinning Evolution during Hot Deformation of Incoloy 825." Journal of Materials Engineering and Performance 29(9): 6155-6169.Zhou L., Shimizu J., Muroya A. and Eda H. (2003). "Material removal mechanism beyond plastic wave propagation rate." Precision Engineering 27(2): 109-116.Zhou N., Lin Peng R. and Pettersson R. (2017). "Surface characterization of austenitic stainless steel 304L after different grinding operations." International Journal of Mechanical and Materials Engineering 12(1): 6.Zhu Q., Huang Q., Tian Y., Zhao S., Chen Y., Cao G., Song K., Zhou Y., Yang W., Zhang Z., An X., Zhou H. and Wang J. (2022). "Hierarchical twinning governed by defective twin boundary in metallic materials." Science Advances 8(20): eabn8299.Zhu Y., Zhang K., Meng Z., Zhang K., Hodgson P., Birbilis N., Weyland M., Fraser H. L., Lim S. C. V., Peng H., Yang R., Wang H. and Huang A. (2022). "Ultrastrong nanotwinned titanium alloys through additive manufacturing." Nature Materials 21(11): 1258-1262.Zhu Y. T., Liao X. Z. and Wu X. L. (2012). "Deformation twinning in nanocrystalline materials." Progress in Materials Science 57(1): 1-62.Zhu Y. T., Liao X. Z., Wu X. L. and Narayan J. (2013). "Grain size effect on deformation twinning and detwinning." Journal of Materials Science 48(13): 4467-4475.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/719132
专题南方科技大学
工学院_机械与能源工程系
推荐引用方式
GB/T 7714
Jiang QH. Material Removal Mechanism and Surface Integrity of Wrought and SLM-ed Ti6Al4V Alloys in Ultra-high-speed Machining[D]. 香港. 香港理工大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11968003-江庆红-机械与能源工程(17596KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[江庆红]的文章
百度学术
百度学术中相似的文章
[江庆红]的文章
必应学术
必应学术中相似的文章
[江庆红]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。