中文版 | English
题名

An efficient discrete unified gas-kinetic scheme for compressible thermal flows

作者
通讯作者Lian-Ping Wang
发表日期
2024-02-26
DOI
发表期刊
ISSN
1070-6631
EISSN
1089-7666
卷号36期号:026123
摘要
In this paper, an efficient discrete unified gas-kinetic scheme (DUGKS) is developed for compressible thermal flows based on the total energy kinetic model for natural convection with a large relative temperature difference. A double distribution function model is designed with the second distribution representing the total energy. This efficient DUGKS enables the simulation of compressible thermal flows, governed by the compressible Navier-Stokes-Fourier system, using only a seventh-order, off-lattice Gauss-Hermite quadrature (GHQ) D3V27A7 combined with a fifth-order GHQ D3V13A5. The external force is included by truncated Hermite expansions. Based on the Chapman-Enskog approximation and Hermite projection, we propose a systematic approach to derive the discrete kinetic boundary conditions for the density and total energy distribution functions. The discrete kinetic boundary treatments are provided for the no-slip boundary condition, Dirichlet boundary condition and Neumann boundary condition. To validate our scheme, we perform simulations of steady natural convection ( R a = 10(3) - 10(6)) in two- and three-dimensional cavities with differentially heated sidewalls and a large temperature difference ( epsilon = 0.6), where the Oberbeck-Boussinesq approximation is invalid. The results demonstrate that the current efficient DUGKS is robust and accurate for thermal compressible flow simulations. With the D3V27A7 and D3V13A5 off-lattice discrete particle velocity model, the computational efficiency of the DUGKS is improved by a factor of 3.09 when compared to the previous partial energy kinetic model requiring the ninth-order Gauss-Hermite quadrature.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China10.13039/501100001809["T2250710183","U2241269","91852205","11961131006"] ; National Natural Science Foundation of China[11988102] ; NSFC Basic Science Center Program[2023B1212060001] ; Taizhou-Shenzhen Innovation Center, Guangdong Provincial Key Laboratory of Turbulence Research and Applications[2020B1212030001] ; Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications["2020-148","KQTD20180411143441009"] ; Shenzhen Science & Technology Program[K2023124]
WOS研究方向
Mechanics ; Physics
WOS类目
Mechanics ; Physics, Fluids & Plasmas
WOS记录号
WOS:001177282500006
出版者
ESI学科分类
PHYSICS
来源库
人工提交
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/719151
专题工学院_力学与航空航天工程系
作者单位
1.Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
2.Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology
3.Institute of Interdisciplinary Research for Mathematics and Applied Science, Huazhong University of Science and Technology, Wuhan 430074, China
推荐引用方式
GB/T 7714
Xin Wen,Lian-Ping Wang,Zhaoli Guo. An efficient discrete unified gas-kinetic scheme for compressible thermal flows[J]. Physics of Fluids,2024,36(026123).
APA
Xin Wen,Lian-Ping Wang,&Zhaoli Guo.(2024).An efficient discrete unified gas-kinetic scheme for compressible thermal flows.Physics of Fluids,36(026123).
MLA
Xin Wen,et al."An efficient discrete unified gas-kinetic scheme for compressible thermal flows".Physics of Fluids 36.026123(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
209.Wen_etal_PoF_202(3654KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xin Wen]的文章
[Lian-Ping Wang]的文章
[Zhaoli Guo]的文章
百度学术
百度学术中相似的文章
[Xin Wen]的文章
[Lian-Ping Wang]的文章
[Zhaoli Guo]的文章
必应学术
必应学术中相似的文章
[Xin Wen]的文章
[Lian-Ping Wang]的文章
[Zhaoli Guo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。