中文版 | English
题名

Improved Performance of GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors Towards Power Applications

姓名
姓名拼音
HE Jiaqi
学号
12068013
学位类型
博士
学位专业
Electrical and Electronic Engineering
导师
于洪宇
导师单位
深港微电子学院
外机构导师
LI Gang
外机构导师单位
Department of Electrical and Electronic Engineering
论文答辩日期
2024-02-05
论文提交日期
2024-03-04
学位授予单位
香港理工大学
学位授予地点
香港
摘要

GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) are potential candidates for the next generation of high-power electronics. To further reduce dielectric defects and suppress the gate leakage, an in-situ SiNx cap layer on the AlGaN barrier, which is grown continuously by metal-organic chemical vapor deposition (MOCVD), has been extensively studied as a means of protecting the AlGaN surface from air and process-induced damage. The passivation results in the presence of a large amount of positive fixed charges at the in-situ SiNx/AlGaN interface, inducing a higher two-dimensional electron gas (2DEG) density at the AlGaN/GaN heterojunction. This enhances the drain current but at the expense of a lower threshold voltage (Vth). To achieve energy savings and improve safety, it is necessary to employ normally-off GaN HEMTs to simplify circuit designs and for fail-safe systems. This thesis introduces the fundamentals of GaN MIS-HEMTs and covers an overview of achieving normally-off operation and low-damage fabrication processes. Moreover, several continuously improved works have been conducted to address the abovementioned issues.

The first work uses an in-situ SiNx passivation to compensate for the 2DEG deficiency in the access region of ultrathin-barrier (UTB) AlGaN/GaN heterojunction. A high D2DEG of 1.50 × 1013 cm-2 and a maximum ID of 705 mA/mm was achieved. The variation of interface charges decreased the D2DEG by five times compared with the piezoelectric polarization during SiNx removal. In the case of MIS-HEMTs with oxide dielectrics, the in-situ SiNx interlayer has demonstrated its great potential in reducing the oxide traps to achieve power HEMT devices with low interface states. Furthermore, The UTB Al0.05Ga0.95N/GaN MIS-HEMTs with various Al2O3/in-situ SiNx gate dielectric stacks were fabricated. The ultralow subthreshold swing (SS) and double-sweep (testing the transfer curves up and down) Vth shift (∆Vth) was achieved by the excellent interface quality of in-situ SiNx/AlGaN.

To solve the problem of the negative Vth shift induced by the positive fixed charges , the second work of pre-gate O3 treatment to realize normally-off operation on an in-situ SiNx/AlGaN/GaN platform was developed. The Vth was increased by 2 V by compensating the Al2O3/AlGaN net polarization charges with O3 treatment in the atomic layer deposition (ALD) system. This also reduced the interface traps by more than one order of magnitude. The combination of in-situ SiNx passivation and high-quality O3-treated Al2O3/AlGaN gate interface led the device to display an excellent breakdown voltage of 1498 V at a low specific on-resistance of 2.02 mΩ·cm2. Furthermore, based on the dielectric thickness-dependent experimental calculation and numerical simulation, a physical model for the positive fixed charges at the Al2O3/AlGaN interface was established. The gate stability, time-dependent, and temperature-dependent reliability were all improved. This ALD-O3 treatment provides a practical method for fabricating normally-off GaN power MIS-HEMTs by fixed charge modulation.

In order to improve the positive Vth of the UTB GaN MIS-HEMTs, the third work involving two regrowth processes for the recessed-gate structure with in-situ SiNx function layer was developed. The 20 nm Al0.2Ga0.8N and 10 nm in-situ SiNx were regrown to restore 2DEG and reduce contact resistance (Rc). The partially-recessed MIS-HEMTs achieved a high Vth of more than 2.5 V with a low on-state resistance (Ron) of 5.5 Ω·mm by the gate dielectric of ALD-Al2O3 and 6.0 Ω·mm by ALD-HfO2. A Vth of 0.6 V with ΔVth below 30 mV was realized by the fully-recessed MIS-HEMTs with in-situ SiNx/Al2O3 gate stacks. The devices on the wafer also delivered interface density lower than 1012 cm−2eV−1, high field-effect mobility of 1991 cm2/V·s, and narrow Vth distribution deviations below 0.23 V. Taking advantage of in-situ SiNx with regrowth techniques shows great potential in achieving high-performance GaN normally-off MIS-HEMTs.

The fourth work is the development of a high-quality etching-free regrown fishbone trenches (RFT) to improve the recessed-gate GaN MIS-HEMT performance. The innovative RFT structure and improved etching-free process, achieved a series of normally-off GaN MIS-HEMTs with high Vth and excellent dynamic properties. In addition, the RFT structure enhanced the gate breakdown voltage and time-dependent reliability without sacrificing output performance.

In summary, this Ph.D. study encompasses the following aspects in a systematic self-sustainability manner. First, distinguishing influences on thin-barrier AlGaN/GaN heterojunction’s electrical properties with in-situ SiNx caps. Second, exploring the practical O3 treatment to solve the difficulty of normally-off operation on in-situ SiNx/AlGaN/GaN platform. Third, further attempt the novel regrowth processes and trench pattern design to improve the device performance of normally-off GaN MIS-HEMTs. These works will provide new insight into the development of high-power GaN MIS-HEMTs.

关键词
语种
英语
培养类别
联合培养
入学年份
2020
学位授予年份
2024-03
参考文献列表

1. E. A. Jones, F. Wang, and B. Ozpineci, presented at the 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, Knoxville, TN, USA, 2014 (unpublished).
2. E. A. Jones, F. F. Wang, and D. Costinett, IEEE Journal of Emerging and Selected Topics in Power Electronics 4 (3), 707 (2016).
3. Y. Zhong, J. Zhang, S. Wu, L. Jia, X. Yang, Y. Liu, Y. Zhang, and Q. Sun, Fundamental Research 2 (3), 462 (2022).
4. Y. Zhang, F. Udrea, and H. Wang, Nature Electronics (2022).
5. K. H. Teo, Y. Zhang, N. Chowdhury, S. Rakheja, R. Ma, Q. Xie, E. Yagyu, K. Yamanaka, K. Li, and T. Palacios, J. Appl. Phys. 130 (16), 160902 (2021).
6. F. Roccaforte, G. Greco, P. Fiorenza, and F. Iucolano, Materials 12 (10), 1599 (2019).
7. I. Vurgaftman, J. á. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89 (11), 5815 (2001).
8. A. R. Denton and N. W. Ashcroft, Phys. Rev. A 43 (6), 3161 (1991).
9. H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. Höpler, T. Metzger, E. Born, G. Dollinger, and A. Bergmaier, Appl. Phys. Lett. 71 (11), 1504 (1997).
10. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, and V. Tilak, J. Phys.: Condens. Matter 14 (13), 3399 (2002).
11. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys. 85 (6), 3222 (1999).
12. M. Meneghini, C. D. Santi, I. Abid, M. Buffolo, M. Cioni, R. A. Khadar, L. Nela, N. Zagni, A. Chini, F. Medjdoub, G. Meneghesso, G. Verzellesi, E. Zanoni, and E. Matioli, J. Appl. Phys. 130 (18), 181101 (2021).
13. S. Turuvekere, N. Karumuri, A. A. Rahman, A. Bhattacharya, A. DasGupta, and N. DasGupta, IEEE Trans. Electron Devices 60 (10), 3157 (2013).
14. F. Cai, G. Xia, S. Li, and Y. Fu, in 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (IEEE, Singapore, 2015), pp. 697.
15. J. He, W.-C. Cheng, Q. Wang, K. Cheng, H. Yu, and Y. Chai, Advanced Electronic Materials 7 (4), 2001045 (2021).
16. T. Hashizume, K. Nishiguchi, S. Kaneki, J. Kuzmik, and Z. Yatabe, Mater. Sci. Semicond. Process. 78, 85 (2018).
17. X. Tang, B. Li, H. A. Moghadam, P. Tanner, J. Han, and S. Dimitrijev, IEEE Electron Device Lett. 39 (8), 1145 (2018).
18. X. Li, M. Van Hove, M. Zhao, K. Geens, W. Guo, S. You, S. Stoffels, V.-P. Lempinen, J. Sormunen, and G. Groeseneken, IEEE Electron Device Lett. 39 (7), 999 (2018).
19. C.-H. Lee, W.-R. Lin, Y.-H. Lee, and J.-j. Huang, IEEE Trans. Electron Devices 65 (2), 488 (2018).
20. J. Feng, Z. He, Y. En, Y. Huang, Y. Chen, J. He, T. Yin, and G. Li, presented at the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), 2018 (unpublished).
21. J. Wei, H. Xu, R. Xie, M. Zhang, H. Wang, Y. Wang, K. Zhong, M. Hua, J. He, and K. J. Chen, presented at the 2019 IEEE 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2019 (unpublished).
22. Y. Wang, J. Wei, S. Yang, J. Lei, M. Hua, and K. J. Chen, presented at the 2019 IEEE 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2019 (unpublished).
23. Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, IEEE Trans. Electron Devices 54 (12), 3393 (2007).
24. J. Fu, F. Fouquet, M. Kadi, and P. Dherbécourt, Microelectronics Reliability 88, 652 (2018).
25. B. Bakeroot, A. Stockman, N. Posthuma, S. Stoffels, and S. Decoutere, IEEE Trans. Electron Devices 65 (1), 79 (2018).
26. S.-J. Huang, C.-W. Chou, Y.-K. Su, J.-H. Lin, H.-C. Yu, D.-L. Chen, and J.-L. Ruan, Appl. Surf. Sci. 401, 373 (2017).
27. N. Kaneko, O. Machida, M. Yanagihara, S. Iwakami, R. Baba, H. Goto, and A. Iwabuchi, presented at the 2009 IEEE 21st International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2009 (unpublished).
28. L. Li, W. Wang, L. He, J. Zhang, Z. Wu, B. Zhang, and Y. Liu, Mater. Sci. Semicond. Process. 67, 141 (2017).
29. H. Lu, K. Wen, F. Du, C. Tang, W.-C. Cheng, B. Wei, H. Li, Q. Wang, and H. Yu, Mater. Sci. Semicond. Process. 154, 107221 (2023).
30. J. Ren, C. W. Tang, H. Feng, H. X. Jiang, W. T. Yang, X. D. Zhou, K. M. Lau, and J. K. O. Sin, IEEE Electron Device Lett. 39 (3), 394 (2018).31. P. Xue, L. Maresca, M. Riccio, G. Breglio, and A. Irace, IEEE Trans. Electron Devices 67 (4), 1686 (2020).32. C. C. Wu and S. L. Jeng, Sens. Mater. 30 (3), 453 (2018).33. S. Elangovan, S. Cheng, and E. Y. Chang, Energies 13 (10), 2628 (2020).34. V. Kumar, A. Kuliev, T. Tanaka, Y. Otoki, and I. Adesida, in Electron. Lett. (Institution of Engineering and Technology, 2003), Vol. 39, pp. 1758.35. W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, IEEE Trans. Electron Devices 53 (2), 356 (2006).36. M. Hua, X. Cai, S. Yang, Z. Zhang, Z. Zheng, N. Wang, and K. J. Chen, ACS Applied Electronic Materials 1 (5), 642 (2019).37. T. Hosoi, K. Watanabe, M. Nozaki, T. Yamada, T. Shimura, and H. Watanabe, Jpn. J. Appl. Phys. 58 (SC), SCCD16 (2019).38. E. Acurio, F. Crupi, P. Magnone, L. Trojman, and F. Iucolano, Microelectron. Eng. 178, 42 (2017).39. G. Meneghesso, M. Meneghini, D. Bisi, I. Rossetto, T.-L. Wu, M. Van Hove, D. Marcon, S. Stoffels, S. Decoutere, and E. Zanoni, Microelectronics Reliability 58, 151 (2016).40. Y. Shi, S. Huang, Q. Bao, X. Wang, K. Wei, H. Jiang, J. Li, C. Zhao, S. Li, Y. Zhou, H. Gao, Q. Sun, H. Yang, J. Zhang, W. Chen, Q. Zhou, B. Zhang, and X. Liu, IEEE Trans. Electron Devices 63 (2), 614 (2016).41. Q. Hu, S. Li, T. Li, X. Wang, X. Li, and Y. Wu, IEEE Electron Device Lett. 39 (9), 1377 (2018).42. D.-H. Son, Y.-W. Jo, C.-H. Won, J.-H. Lee, J. H. Seo, S.-H. Lee, J.-W. Lim, J. H. Kim, I. M. Kang, and Cristoloveanu, Solid-State Electron. 141, 7 (2018).43. J. He, M. Hua, Z. Zhang, and K. J. Chen, IEEE Trans. Electron Devices 65 (8), 3185 (2018).44. Y. He, H. Gao, C. Wang, Y. Zhao, X. Lu, C. Zhang, X. Zheng, L. Guo, X. Ma, and Y. Hao, Physica Status Solidi A 216 (16), 1900115 (2019).45. C. Liu, S. Yang, S. H. Liu, Z. K. Tang, H. X. Wang, Q. M. Jiang, and K. J. Chen, IEEE Electron Device Lett. 36 (4), 318 (2015).46. K. J. Chen, L. Yuan, M. J. Wang, H. Chen, S. Huang, Q. Zhou, C. Zhou, B. K. Li, and J. N. Wang, presented at the 2011 IEEE International Electron Devices Meeting (IEDM), 2011 (unpublished).47. M. A. Khan, Q. Chen, C. Sun, J. Yang, M. Blasingame, M. Shur, and H. Park, Appl. Phys. Lett. 68 (4), 514 (1996).48. S. Huang, X. Wang, X. Liu, Y. Wang, J. Fan, S. Yang, H. Yin, K. Wei, W. Wang, and H. Gao, Appl. Phys. Exp. 12 (2), 024001 (2019).49. Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, IEEETransactions on Electron Devices 53 (9), 2207 (2006).50. H. S. Kim, D. H. Lee, J. W. Lee, T. I. Kim, and G. Y. Yeom, Vacuum 56 (1), 45 (2000).51. S. Smith, C. Wolden, M. Bremser, A. Hanser, R. Davis, and W. J. A. p. l. Lampert, Appl. Phys. Lett. 71 (25), 3631 (1997).52. T. Wu, Z.-B. Hao, G. Tang, and Y. Luo, Jpn. J. Appl. Phys. 42 (3A), L257 (2003).53. C. B. Vartuli, J. D. MacKenzie, J. W. Lee, C. R. Abernathy, S. J. Pearton, and R. J. Shul, J. Appl. Phys. 80 (7), 3705 (1996).54. Y. Zhou, Y. Zhong, H. Gao, S. Dai, J. He, M. Feng, Y. Zhao, Q. Sun, D. An, and H. Yang, IEEE Journal of the Electron Devices Society 5 (5), 340 (2017).55. D. BUTTARI, A. CHINI, A. CHAKRABORTY, L. MCCARTHY, H. XING, T. PALACIOS, L. SHEN, S. KELLER, and U. K. MISHRA, presented at the IEEE Lester Eastman Conference on High Performance Devices, 2004 (unpublished).56. Z. Xu, J. Wang, Y. Liu, J. Cai, J. Liu, M. Wang, M. Yu, B. Xie, W. Wu, X. Ma, and J. Zhang, IEEE Electron Device Lett. 34 (7), 855 (2013).57. Z. Xu, J. Wang, J. Liu, C. Jin, Y. Cai, Z. Yang, M. Wang, M. Yu, B. Xie, and W. Wu, IEEE Electron Device Lett. 35 (12), 1197 (2014).58. S. Lin, M. Wang, F. Sang, M. Tao, C. P. Wen, B. Xie, M. Yu, J. Wang, Y. Hao, W. Wu, J. Xu, K. Cheng, and B. Shen, IEEE Electron Device Lett. 37 (4), 377 (2016).59. J. Wu, S. Lei, W.-C. Cheng, R. Sokolovskij, Q. Wang, G. Xia, and H. Yu, J. Vac. Sci. Technol., A 37 (6) (2019).60. J. Wu, Y. Jiang, Z. Wan, S. Lei, W.-C. Cheng, G. Zhou, R. Sokolovskij, Q. Wang, G. M. Xia, and H. Yu, presented at the 2019 IEEE 13th International Conference on ASIC (ASICON), 2019 (unpublished).61. Z.-Y. W. Yang Jiang, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu, Chin. Phys. Lett. 37 (6), 068503 (2020).62. F. Du, Y. Jiang, Z. Qiao, Z. Wu, C. Tang, J. He, G. Zhou, W.-C. Cheng, X. Tang, Q. Wang, and H. Yu, Mater. Sci. Semicond. Process. 143, 106544 (2022).63. F. Du, Y. Jiang, Z. Wu, H. Lu, J. He, C. Tang, Q. Hu, K. Wen, X. Tang, H. Hong, H. Yu, and Q. Wang, Crystals 12 (5), 722 (2022).64. Y. Zhong, S. Su, Y. Zhou, H. Gao, X. Chen, J. He, X. Zhan, Q. Sun, and H. Yang, ACS Appl. Mater. Interfaces 11 (24), 21982 (2019).65. Y. Zhong, Q. Sun, H. Yang, S. Su, X. Chen, Y. Zhou, J. He, H. Gao, X. Zhan, X. Guo, and J. Liu, IEEE Electron Device Lett. 40 (9), 1495 (2019).66. N. Maeda, T. Saitoh, K. Tusubaki, and N. Kobayashi, physica status solidi (a) 188 (1), 223 (2001).67. Y. Wen, Z. He, J. Li, R. Luo, P. Xiang, Q. Deng, G. Xu, Z. Shen, Z. Wu, B. Zhang, H. Jiang, G. Wang, and Y. Liu, Appl. Phys. Lett. 98 (7), 072108 (2011).68. J. Zhang, L. He, L. Li, Y. Ni, T. Que, Z. Liu, W. Wang, J. Zheng, Y. Huang, J. Chen, X. Gu, Y. Zhao, L. He, Z. Wu, and Y. Liu, IEEE Electron Device Lett. 39 (11), 1720 (2018).69. H. Kambayashi, Y. Satoh, T. Kokawa, N. Ikeda, T. Nomura, and S. Kato, Solid-State Electron. 56 (1), 163 (2011).70. J. Zhang, L. He, L. Li, Y. Ni, T. Que, Z. Liu, W. Wang, J. Zheng, Y. Huang, J. Chen, X. Gu, Y. Zhao, L. He, Z. Wu, and Y. Liu, presented at the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2018 (unpublished).71. T. Huang, X. Zhu, and K. M. Lau, presented at the 2013 IEEE 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2013 (unpublished).72. L. He, F. Yang, L. Li, Z. Chen, Z. Shen, Y. Zheng, Y. Yao, Y. Ni, D. Zhou, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, IEEE Trans. Electron Devices 64 (4), 1554 (2017).73. S. Nakazawa, N. Shiozaki, N. Negoro, N. Tsurumi, Y. Anda, M. Ishida, and T. Ueda, Jpn. J. Appl. Phys. 56 (9), 091003 (2017).74. H. Jiang, C. W. Tang, and K. M. Lau, IEEE Electron Device Lett. 39 (3), 405 (2018).75. J. Zhang, L. He, L. Li, Y. Ni, T. Que, Z. Liu, W. Wang, J. Zheng, Y. Huang, J. Chen, X. Gu, Y. Zhao, L. He, Z. Wu, and Y. Liu, presented at the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2018 (unpublished).76. J. T. Asubar, S. Kawabata, H. Tokuda, A. Yamamoto, and M. Kuzuhara, IEEE Electron Device Lett. 41 (5), 693 (2020).77. H. Jiang, C. W. Tang, and K. M. Lau, IEEE Electron Device Lett. 39 (3), 405 (2018).78. S. Huang, X. Liu, X. Wang, X. Kang, J. Zhang, J. Fan, J. Shi, K. Wei, Y. Zheng, and H. Gao, IEEE Trans. Electron Devices 65 (1), 207 (2017).79. P.-C. Han, Z.-Z. Yan, C.-H. Wu, E. Y. Chang, and Y.-H. Ho, presented at the 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2019 (unpublished).80. Z. Liu, S. Huang, Q. Bao, X. Wang, K. Wei, H. Jiang, H. Cui, J. Li, C. Zhao, X. Liu, J. Zhang, Q. Zhou, W. Chen, B. Zhang, and L. Jia, J. Vac. Sci. Technol., B 34 (4), 041202 (2016).81. S. Kumar, H. Kumar, S. Vura, A. S. Pratiyush, V. S. Charan, S. B. Dolmanan, S. Tripathy, R. Muralidharan, and D. N. Nath, IEEE Trans. Electron Devices 66 (3), 1230 (2019).82. K. S. Boutros, R. Chu, and B. Hughes, presented at the 2012 IEEE Energytech, 2012 (unpublished).83. H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. Mishra, IEEE Electron Device Lett. 25 (4), 161 (2004).84. W. Saito, Y. Kakiuchi, T. Nitta, Y. Saito, T. Noda, H. Fujimoto, A. Yoshioka, T. Ohno, and M. Yamaguchi, IEEE Electron Device Lett. 31 (7), 659 (2010).85. P. Andrei, presented at the 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, 2010 (unpublished).86. B. K. Jebalin, A. S. Rekh, P. Prajoon, N. M. Kumar, and D. Nirmal, Microelectronics Journal 46 (12), 1387 (2015).87. F. Zeng, Q. Wang, S. Lin, L. Wang, G. Zhou, W.-C. Cheng, M. He, Y. Jiang, Q. Ge, and M. Li, presented at the 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 2020 (unpublished).88. M. T. Hasan, T. Asano, H. Tokuda, and M. Kuzuhara, IEEE Electron Device Lett. 34 (11), 1379 (2013).89. H. Huang, Y. C. Liang, G. S. Samudra, T.-F. Chang, and C.-F. Huang, IEEE Transactions on Power Electronics 29 (5), 2164 (2013).90. Q. Hu, F. Zeng, W.-C. Cheng, G. Zhou, Q. Wang, and H. Yu, presented at the 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), 2020 (unpublished).91. S. Karmalkar and U. K. Mishra, IEEE Trans. Electron Devices 48 (8), 1515 (2001).92. W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, T. Ogura, and H. Ohashi, IEEE Trans. Electron Devices 50 (12), 2528 (2003).93. J. Liu, Y. F. Guo, J. Zhang, J. Yao, M. Zhang, C. Huang, and L. Du, IEEE Journal of the Electron Devices Society 8, 1031 (2020).94. A. Lidow, M. De Rooij, J. Strydom, D. Reusch, and J. Glaser, GaN transistors for efficient power conversion. (John Wiley & Sons, 2019).95. E. Bahat-Treidel, O. Hilt, F. Brunner, V. Sidorov, J. Würfl, and G. Tränkle, IEEE Trans. Electron Devices 57 (6), 1208 (2010).96. G. Xie, E. Xu, J. Lee, N. Hashemi, B. Zhang, F. Y. Fu, and W. T. Ng, IEEE Electron Device Lett. 33 (5), 670 (2012).97. Y. Dora, A. Chakraborty, L. Mccarthy, S. Keller, S. DenBaars, and U. Mishra, IEEE Electron Device Lett. 27 (9), 713 (2006).98. P. Fernandes Paes Pinto Rocha, L. Vauche, P. Pimenta-Barros, S. Ruel, R. Escoffier, and J. Buckley, Energies 16 (7), 2978 (2023).99. H.-S. Kim, M.-J. Kang, W.-H. Jang, K.-S. Seo, H. Kim, and H.-Y. Cha, Solid-State Electron. 173, 107876 (2020).100. M. Hua, Z. Zhang, J. Wei, J. Lei, G. Tang, K. Fu, Y. Cai, B. Zhang, and K. J. Chen, presented at the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, 2016 (unpublished).101. W. Shi, Q. Jiang, T. Luan, S. Huang, X. Wang, F. Guo, Y. Yao, K. Deng, L. Bi, J. Fan, H. Yin, K. Wei, W. Xiong, Y. Li, H. Jiang, J. Li, and X. Liu, IEEE Trans. Electron Devices 68 (9), 4274 (2021).102. S. Zhang, K. Wei, Y. C. Zhang, X. J. Chen, S. Huang, H. B. Yin, G. G. Liu, T. T. Yuan, Y. K. Zheng, X. H. Wang, and X. Y. Liu, Vacuum 191, 110359 (2021).103. H. Zhang, Y. Chen, Y. Sun, L. Yang, K. Hu, Z. Huang, K. Liang, Z. Xing, H. Wang, M. Zhang, S. Guo, and H. Sun, Appl. Phys. Lett. 122 (17) (2023).104. H.-Y. Lee, C.-H. Lin, C.-C. Wei, J.-C. Yang, E. Y. Chang, and C.-T. Lee, IEEE Trans. Electron Devices 68 (8), 3768 (2021).105. K. Jinesh, J. Van Hemmen, M. Van De Sanden, F. Roozeboom, J. Klootwijk, W. Besling, and W. Kessels, J. Electrochem. Soc. 158 (2), G21 (2010).106. F. Azam, A. Tanneeru, B. Lee, and V. Misra, IEEE Trans. Electron Devices 67 (3), 881 (2020).107. H. Tokuda, J. T. Asubar, and M. Kuzuhara, Jpn. J. Appl. Phys. 55 (12), 120305 (2016).108. A. Rawat, M. Meer, V. k. Surana, N. Bhardwaj, V. Pendem, N. S. Garigapati, Y. Yadav, S. Ganguly, and D. Saha, IEEE Trans. Electron Devices 65 (9), 3725 (2018).109. H.-C. Wang, T.-E. Hsieh, Y.-C. Lin, Q. H. Luc, S.-C. Liu, C.-H. Wu, C. F. Dee, B. Y. Majlis, and E. Y. Chang, IEEE Journal of the Electron Devices Society 6, 110 (2018).110. T. Kubo, M. Miyoshi, and T. Egawa, Semicond. Sci. Technol. 32 (6), 065012 (2017).111. Q. Zhou, Y. Yang, K. Hu, R. Zhu, W. Chen, and B. Zhang, IEEE Transactions on Industrial Electronics 64 (11), 8971 (2017).112. S. Yang, Z. Tang, K. Wong, Y. Lin, C. Liu, Y. Lu, S. Huang, and K. J. Chen, IEEE Electron Device Lett. 34 (12), 1497 (2013).113. M.-J. Kang, M.-S. Lee, G.-H. Choi, I.-H. Hwang, H.-Y. Cha, and K.-S. Seo, Phys. Status Solidi A 214 (8), 1600726 (2017).114. M. Hua, C. Liu, S. Yang, S. Liu, K. Fu, Z. Dong, Y. Cai, B. Zhang, and K. J. Chen, IEEE Electron Device Lett. 36 (5), 448 (2015).115. W. Choi, O. Seok, H. Ryu, H. Cha, and K. Seo, IEEE Electron Device Lett. 35 (2), 175 (2014).116. M. Hua, J. Wei, G. Tang, Z. Zhang, Q. Qian, X. Cai, N. Wang, and K. J. Chen, IEEE Electron Device Lett. 38 (7), 929 (2017).117. J. Chen, T. Kawanago, H. Wakabayashi, K. Tsutsui, H. Iwai, D. Nohata, H. Nohira, and K. Kakushima, Microelectronics Reliability 60, 16 (2016).118. Y. C. Lin, Y. X. Huang, G. N. Huang, C. H. Wu, J. N. Yao, C. M. Chu, S. Chang, C. C. Hsu, J. H. Lee, K. Kakushima, K. Tsutsui, H. Iwai, and E. Y. Chang, IEEE Electron Device Lett. 38 (8), 1101 (2017).119. S. Yang, S. Huang, M. Schnee, Q.-T. Zhao, J. Schubert, and K. J. Chen, IEEE Trans. Electron Devices 60 (10), 3040 (2013).120. S. Huang, S. Yang, J. Roberts, and K. J. Chen, Jpn. J. Appl. Phys. 50, 110202 (2011).121. M. Hua, X. Cai, S. Yang, Z. Zhang, Z. Zheng, J. Wei, N. Wang, and K. J. Chen, presented at the 2018 IEEE International Electron Devices Meeting (IEDM), 2018 (unpublished).122. M. G. Ganchenkova and R. M. Nieminen, Phys. Rev. Lett. 96 (19), 196402 (2006).123. K. J. Chen, S. Yang, Z. Tang, S. Huang, Y. Lu, Q. Jiang, S. Liu, C. Liu, and B. Li, Phys. Status Solidi A 212 (5), 1059 (2015).124. S. Yang, S. Liu, C. Liu, M. Hua, and K. J. Chen, Semicond. Sci. Technol. 31 (2), 024001 (2016).125. F. Guo, S. Huang, X. Wang, T. Luan, W. Shi, K. Deng, J. Fan, H. Yin, J. Shi, F. Mu, K. Wei, and X. Liu, Appl. Phys. Lett. 118 (9) (2021).126. Ting-En Hsieh, Edward Yi Chang, Yi-Zuo Song, Yueh-Chin Lin, Huan-Chung Wang, Shin-Chien Liu, Sayeef Salahuddin, and C. C. Hu, IEEE Electron Device Lett. 35 (7), 732 (2014).127. S. Huang, Q. Jiang, S. Yang, C. Zhou, and K. J. Chen, IEEE Electron Device Lett. 33 (4), 516 (2012).128. Z. Jie-Jie, M. Xiao-Hua, X. Yong, H. Bin, C. Wei-Wei, Z. Jin-Cheng, and H. Yue, IEEE Trans. Electron Devices 62 (2), 512 (2015).129. S. Huang, X. Liu, K. Wei, G. Liu, X. Wang, B. Sun, X. Yang, B. Shen, C. Liu, S. Liu, M. Hua, S. Yang, and K. J. Chen, Appl. Phys. Lett. 106 (3), 033507 (2015).130. Y. Wu, T. Shen, P. Ye, and G. Wilk, Appl. Phys. Lett. 90 (14), 143504 (2007).131. T. Kubo, M. Miyoshi, and T. Egawa, Semicond. Sci. Technol. 32, 065012 (2017).132. M. Esposto, S. Krishnamoorthy, D. N. Nath, S. Bajaj, T.-H. Hung, and S. Rajan, Appl. Phys. Lett. 99 (13), 133503 (2011).133. S. Ganguly, J. Verma, G. Li, T. Zimmermann, H. Xing, and D. Jena, Appl. Phys. Lett. 99 (19), 193504 (2011).134. T. Mattila and R. M. Nieminen, Physical Review B 54 (23), 16676 (1996).135. S. Kumar, H. Kumar, S. Vura, A. S. Pratiyush, V. S. Charan, S. B. Dolmanan, S. Tripathy, R. Muralidharan, and D. N. Nath, IEEE Trans. Electron Devices 66 (3), 1230 (2019).136. Z. Sun, W. Cheng, J. Gao, H. Liang, H. Huang, R. Wang, N. Sun, P. Tao, Y. Ren, S. Song, H. Wang, and S. Li, IEEE Electron Device Lett. 41 (1), 135 (2020).137. T.-H. Hung, P. S. Park, S. Krishnamoorthy, D. N. Nath, and S. Rajan, IEEE Electron Device Lett. 35 (3), 312 (2014).138. D. Green, S. Gibb, B. Hosse, R. Vetury, D. Grider, and J. Smart, J. Cryst. Growth 272 (1-4), 285 (2004).139. M. Wosko, B. Paszkiewicz, T. Szymanski, and R. Paszkiewicz, J. Cryst. Growth 414, 248 (2015).140. H.-M. Wang, J.-P. Zhang, C.-Q. Chen, Q. Fareed, J.-W. Yang, and M. A. Khan, Appl. Phys. Lett. 81 (4), 604 (2002).141. S. Raghavan and J. M. Redwing, J. Appl. Phys. 98 (2), 023514 (2005).142. S. Raghavan and J. Redwing, J. Appl. Phys. 98 (2), 023515 (2005).143. S. L. Selvaraj, T. Suzue, and T. Egawa, IEEE Electron Device Lett. 30 (6), 587 (2009).144. A. Bose, D. Biswas, S. Hishiki, S. Ouchi, K. Kitahara, K. Kawamura, and A. Wakejima, IEEE Electron Device Lett. 41 (10), 1480 (2020).145. M. Tao, M. Wang, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. Cheng, and B. Shen, presented at the 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD), 2017 (unpublished).146. L. Heuken, M. Kortemeyer, A. Ottaviani, M. Schröder, M. Alomari, D. Fahle, M. Marx, M. Heuken, H. Kalisch, and A. Vescan, IEEE Trans. Electron Devices 67 (3), 1113 (2020).147. N. Remesh, N. Mohan, S. Raghavan, R. Muralidharan, and D. N. Nath, IEEE Trans. Electron Devices 67 (6), 2311 (2020).148. S. Besendorfer, E. Meissner, T. Zweipfennig, H. Yacoub, D. Fahle, H. Behmenburg, H. Kalisch, A. Vescan, J. Friedrich, and T. Erlbacher, AIP Adv. 10 (4), 045028 (2020).149. F. S. Choi, J. Griffiths, C. Ren, K. Lee, Z. Zaidi, P. Houston, I. Guiney, C. J. Humphreys, R. A. Oliver, and D. J. Wallis, J. Appl. Phys. 124 (5), 055702 (2018).150. Y.-K. Noh, S.-T. Lee, M.-D. Kim, and J.-E. Oh, J. Cryst. Growth 509, 141 (2019).151. M. Borga, M. Meneghini, S. Stoffels, M. Van Hove, M. Zhao, X. Li, S. Decoutere, E. Zanoni, and G. Meneghesso, Microelectronics Reliability 88-90, 584 (2018).152. H. Chandrasekar, M. J. Uren, A. Eblabla, H. Hirshy, M. A. Casbon, P. J. Tasker, K. Elgaid, and M. Kuball, IEEE Electron Device Lett. 39 (10), 1556 (2018).153. H. Yacoub, T. Zweipfennig, G. Lükens, H. Behmenburg, D. Fahle, M. Eickelkamp, M. Heuken, H. Kalisch, and A. Vescan, IEEE Trans. Electron Devices 65 (8), 3192 (2018).154. I. Hwang, J. Kim, S. Chong, H.-S. Choi, S.-K. Hwang, J. Oh, J. K. Shin, and U. I. Chung, IEEE Electron Device Lett. 34 (12), 1494 (2013).155. L. Yang, M. Zhang, B. Hou, M. Mi, M. Wu, Q. Zhu, J. Zhu, Y. Lu, L. Chen, X. Zhou, L. Lv, X. Ma, and Y. Hao, IEEE Trans. Electron Devices 66 (3), 1202 (2019).156. J. H. Lee, J. M. Ju, G. Atmaca, J. G. Kim, S. H. Kang, Y. S. Lee, S. H. Lee, J. W. Lim, H. S. Kwon, S. B. Lisesivdin, and J. H. Lee, IEEE Journal of the Electron Devices Society 6 (1), 1179 (2018).157. H.-S. Kang, C.-H. Won, Y.-J. Kim, D.-S. Kim, Y. J. Yoon, I. M. Kang, Y. S. Lee, and J.-H. Lee, Phys. Status Solidi A 212 (5), 1116 (2015).158. S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, AIP Adv. 6 (3), 035308 (2016).159. N. Dharmarasu, G. S. Karthikeyan, M. Agrawal, S. T. L. Alex, and K. Radhakrishnan, presented at the 2019 Electron Devices Technology and Manufacturing Conference (EDTM), 2019 (unpublished).160. V. Joshi, S. P. Tiwari, and M. Shrivastava, IEEE Trans. Electron Devices 66 (1), 570 (2019).161. A. Siddique, R. Ahmed, J. Anderson, and E. L. Piner, J. Cryst. Growth 517, 28 (2019).162. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature 406 (6798), 865 (2000).163. H. Hasegawa, T. Inagaki, S. Ootomo, and T. Hashizume, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 21 (4), 1844 (2003).164. M. Higashiwaki, Z. Chen, R. Chu, Y. Pei, S. Keller, U. Mishra, N. Hirose, T. Matsui, and T. Mimura, Appl. Phys. Lett. 94 (5), 053513 (2009).165. M. Tadjer, T. Anderson, K. Hobart, M. Mastro, J. Hite, J. Caldwell, Y. Picard, F. Kub, and C. Eddy, J. Electron. Mater. 39 (11), 2452 (2010).166. X. Lu, J. Ma, Z. Liu, H. Jiang, T. Huang, and K. M. Lau, Phys. Status Solidi A 211 (4), 775 (2014).167. H. Jiang, C. Liu, Y. Chen, X. Lu, C. W. Tang, and K. M. Lau, IEEE Trans. Electron Devices 64 (3), 832 (2017).168. X. Lu, J. Ma, H. Jiang, C. Liu, P. Xu, and K. M. Lau, IEEE Trans. Electron Devices 62 (6), 1862 (2015).169. L. Cheng, W. Xu, D. Pan, Y. Zhu, F. Ren, D. Zhou, J. Ye, D. Chen, R. Zhang, and Y. Zheng, J. Phys. D: Appl. Phys. 52 (30), 305105 (2019).170. A. Siddique, R. Ahmed, J. Anderson, M. Nazari, L. Yates, S. Graham, M. Holtz, and E. L. Piner, ACS Applied Electronic Materials 1 (8), 1387 (2019).171. M. Van Hove, X. Kang, S. Stoffels, D. Wellekens, N. Ronchi, R. Venegas, K. Geens, and S. Decoutere, IEEE Trans. Electron Devices 60 (10), 3071 (2013).172. M.-Y. Fan, G.-Y. Yang, G.-N. Zhou, Y. Jiang, W.-M. Li, Y.-L. Jiang, and H.-Y. Yu, IEEE Electron Device Lett. 41 (1), 143 (2020).173. T. Szymanski, M. Wosko, M. Wzorek, B. Paszkiewicz, and R. Paszkiewicz, CrystEngComm 18 (45), 8747 (2016).174. K. Cheng, M. Leys, J. Derluyn, S. Degroote, D. Xiao, A. Lorenz, S. Boeykens, M. Germain, and G. Borghs, J. Cryst. Growth 298, 822 (2007).175. A. Ubukata, K. Ikenaga, N. Akutsu, A. Yamaguchi, K. Matsumoto, T. Yamazaki, and T. Egawa, J. Cryst. Growth 298, 198 (2007).176. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, and V. Tilak, J. Phys.: Condens. Matter 14 (13), 3399 (2002).177. V. Darakchieva, M. Beckers, M.-Y. Xie, L. Hultman, B. Monemar, J.-F. Carlin, E. Feltin, M. Gonschorek, and N. Grandjean, J. Appl. Phys. 103 (10), 103513 (2008).178. P. Moens, C. Liu, A. Banerjee, P. Vanmeerbeek, P. Coppens, H. Ziad, A. Constant, Z. Li, H. De Vleeschouwer, and J. Roig-Guitart, presented at the 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's, 2014 (unpublished).179. F. Meng, J. Zhang, H. Zhou, J. Ma, J. Xue, L. Dang, L. Zhang, M. Lu, S. Ai, X. Li, and Y. Hao, J. Appl. Phys. 112 (2), 023707 (2012).180. N. Onojima, N. Hirose, T. Mimura, and T. Matsui, Appl. Phys. Exp. 1 (7), 071101 (2008).181. L.-C. Chang, T.-H. Tsai, Y.-H. Jiang, and C.-H. Wu, presented at the 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2016 (unpublished).182. A. Chakroun, A. Jaouad, M. Bouchilaoun, O. Arenas, A. Soltani, and H. Maher, physica status solidi (a) 214 (8) (2017).183. R. Zhao, S. Huang, X. Wang, Y. Li, J. Shi, Y. Zhang, J. Fan, H. Yin, X. Chen, K. Wei, S. Wu, X. Yang, B. Shen, and X. Liu, Appl. Phys. Lett. 116 (10) (2020).184. H. Jiang, R. Zhu, Q. Lyu, C. W. Tang, and K. M. Lau, Semicond. Sci. Technol. 36 (3), 034001 (2021).185. M. Capriotti, A. Alexewicz, C. Fleury, M. Gavagnin, O. Bethge, D. Visalli, J. Derluyn, H. D. Wanzenböck, E. Bertagnolli, D. Pogany, and G. Strasser, Appl. Phys. Lett. 104 (11), 113502 (2014).186. S.-C. Liu, C.-K. Huang, C.-H. Chang, Y.-C. Lin, B.-Y. Chen, S.-P. Tsai, B. Y. Majlis, C.-F. Dee, and E. Y. Chang, IEEE Journal of the Electron Devices Society 5 (3), 170 (2017).187. X. Lu, K. Yu, H. Jiang, A. Zhang, and K. M. Lau, IEEE Trans. Electron Devices 64 (3), 824 (2017).188. A. Endoh, Y. Yamashita, K. Ikeda, M. Higashiwaki, K. Hikosaka, T. Matsui, S. Hiyamizu, and T. Mimura, Jpn. J. Appl. Phys. 43 (4S), 2255 (2004).189. N. Sun, H. Huang, Z. Sun, R. Wang, S. Li, P. Tao, Y. Ren, S. Song, H. Wang, S. Li, W. Cheng, and H. Liang, IEEE Trans. Electron Devices 69 (1), 82 (2022).190. J. He, W.-C. Cheng, Y. Jiang, M. Fan, G. Zhou, G. Yang, L. Jiang, X. Wang, Z. Wu, Q. Wang, and H. Yu, Mater. Sci. Semicond. Process. 132, 105907 (2021).191. W.-C. Cheng, J. He, M. He, Z. Qiao, Y. Jiang, F. Du, X. Wang, H. Hong, Q. Wang, and H. Yu, J. Vac. Sci. Technol., B 40 (2), 022212 (2022).192. R. Hao, W. Li, K. Fu, G. Yu, L. Song, J. Yuan, J. Li, X. Deng, X. Zhang, Q. Zhou, Y. Fan, W. Shi, Y. Cai, X. Zhang, and B. Zhang, IEEE Electron Device Lett. 38 (11), 1567 (2017).193. H. Wang, J. Wang, J. Liu, M. Li, Y. He, M. Wang, M. Yu, W. Wu, Y. Zhou, and G. Dai, Appl. Phys. Exp. 10 (10), 106502 (2017).194. H. Wang, J. Wang, M. Li, Q. Cao, M. Yu, Y. He, and W. Wu, IEEE Electron Device Lett. 39 (12), 1888 (2018).195. C. H. Wu, P. C. Han, S. C. Liu, T. E. Hsieh, F. J. Lumbantoruan, Y. H. Ho, J. Y. Chen, K. S. Yang, H. C. Wang, Y. K. Lin, P. C. Chang, Q. H. Luc, Y. C. Lin, and E. Y. Chang, IEEE Electron Device Lett. 39 (7), 991 (2018).196. C. H. Wu, J. Y. Chen, P. C. Han, M. W. Lee, K. S. Yang, H. C. Wang, P. C. Chang, Q. H. Luc, Y. C. Lin, C. F. Dee, A. A. Hamzah, and E. Y. Chang, IEEE Trans. Electron Devices 66 (8), 3441 (2019).197. Y. Cai, Y. Zhang, Y. Liang, I. Z. Mitrovic, H. Wen, W. Liu, and C. Zhao, IEEE Trans. Electron Devices 68 (9), 4310 (2021).198. H. Jiang, Q. Lyu, R. Zhu, P. Xiang, K. Cheng, and K. M. Lau, IEEE Trans. Electron Devices 68 (2), 653 (2021).199. L. Nela, J. Ma, C. Erine, P. Xiang, T. H. Shen, V. Tileli, T. Wang, K. Cheng, and E. Matioli, Nature Electronics (2021).200. X. Wei, X. Zhang, C. Sun, W. Tang, C. Zeng, F. Chen, T. He, G. Yu, L. Song, W. Lin, X. Zhang, D. Zhao, W. Huang, Y. Cai, and B. Zhang, IEEE Trans. Electron Devices 68 (10), 5041 (2021).201. H. Guo, P. Shao, C. Zeng, H. Bai, R. Wang, D. Pan, P. Chen, D. Chen, H. Lu, R. Zhang, and Y. Zheng, Appl. Surf. Sci. 590, 153086 (2022).202. E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, Appl. Phys. Lett. 84 (4), 535 (2004).203. H. Zhang, E. J. Miller, and E. T. Yu, J. Appl. Phys. 99 (2) (2006).204. M. Hua, J. Wei, Q. Bao, J. He, Z. Zhang, Z. Zheng, J. Lei, and K. J. Chen, presented at the 2017 IEEE International Electron Devices Meeting (IEDM), 2017 (unpublished).205. P. Arivazhagan, S. S. Bhattacharya, and K. Baskar, Materials Today: Proceedings 5 (3), 10110 (2018).206. S. Liu, S. Yang, Z. Tang, Q. Jiang, C. Liu, M. Wang, and K. J. Chen, IEEE Electron Device Lett. 35 (7), 723 (2014).207. L. He, L. Li, J. Zhang, Y. Ni, J. Zhang, Z. Liu, Q. Wu, and Y. Liu, presented at the 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Nagoya, Japan, 2021 (unpublished).208. Q. Zhou, B. Chen, Y. Jin, S. Huang, K. Wei, X. Liu, X. Bao, J. Mou, and B. Zhang, IEEE Trans. Electron Devices 62 (3), 776 (2015).209. W. Choi, H. Ryu, N. Jeon, M. Lee, H. Cha, and K. Seo, IEEE Electron Device Lett. 35 (1), 30 (2014).210. M. Li, J. Wang, B. Zhang, Q. Tao, H. Wang, Q. Cao, C. Huang, J. Liu, J. Mo, and W. Wu, Solid-State Electron. 177, 107927 (2021).211. M. Wang, Y. Wang, C. Zhang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen, and B. Shen, IEEE Trans. Electron Devices 61, 2035 (2014).212. J. J. Freedsman, T. Egawa, Y. Yamaoka, Y. Yano, A. Ubukata, T. Tabuchi, and K. Matsumoto, Appl. Phys. Exp. 7 (4), 041003 (2014).213. Q. Zhou, L. Liu, A. Zhang, B. Chen, Y. Jin, Y. Shi, Z. Wang, W. Chen, and B. Zhang, IEEE Electron Device Lett. 37 (2), 165 (2016).

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/719156
专题南方科技大学
南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
He JQ. Improved Performance of GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors Towards Power Applications[D]. 香港. 香港理工大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12068013-何佳琦-南方科技大学-(10185KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[何佳琦]的文章
百度学术
百度学术中相似的文章
[何佳琦]的文章
必应学术
必应学术中相似的文章
[何佳琦]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。