中文版 | English
题名

Stretchable Surface Electromyography Electrode Array Based on Liquid Metal and Conductive Polymer

姓名
姓名拼音
YANG Shuaijian
学号
11959001
学位类型
博士
学位专业
Biomedical Sciences
导师
蒋兴宇
导师单位
生物医学工程系
外机构导师
Samit Chakrabarty
外机构导师单位
University of Leeds
论文答辩日期
2023-11-22
论文提交日期
2024-03-07
学位授予单位
利兹大学
学位授予地点
英国
摘要

Electromyography (EMG), the science of detecting and interpreting muscle electrical activity, plays a crucial role in clinical diagnostics and research. It enables assessment of muscle function, detection of abnormalities, and monitoring of rehabilitation progress. However, the current use of EMG devices is primarily limited to clinical settings, preventing its potential to revolutionize personal health management. If surface electromyography (sEMG) electrodes are stretchable, arrayed, reusable and able to continuously record, their applications for personal health management are broadened. Existing electrodes lack these essential features, hampering their widespread adoption. This thesis addresses these limitations by designing an adhesive dry electrode using tannic acid, polyvinyl alcohol, and PEDOT:PSS (TPP). Through meticulous optimization, TPP electrodes offer superior stretchability and adhesiveness compared to conventional Ag/AgCl electrodes. This ensures stable and long-term skin contact for recording. Furthermore, a metal-polymer electrode array patch (MEAP) is introduced, featuring liquid metal (LM) circuits and TPP electrodes. MEAPs exhibit better conformability than current commercial arrays, resulting in higher signal quality and stable recordings, even during significant skin deformations caused by muscle movements. Manufactured using scalable screen-printing, MEAPs combine stretchable materials and array architecture for real-time monitoring of muscle stress, fatigue, and tendon displacement. They hold great promise in reducing muscle and tendon injuries and enhancing performance in both daily exercise and professional sports. In addition, a pilot study compares MEAP performance in clinical electrodiagnostics with needle electrodes, demonstrating the non-invasive advantage of MEAP by successfully recording the signals from the same motor unit as the needle. These advancements position MEAP at the forefront of the EMG field, poised to drive breakthroughs in electrodiagnostics, personalized medicine, sports science, and rehabilitation.

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2024-01
参考文献列表

1. Konrad, P. Noraxon: the ABC of EMG. A practical introduction tokinesiological electromyography 30–5 Preprint athttp://www.noraxon.com/sdm_downloads/abc-of-emg (2005).
2. Gupta, A., Sayed, T., Garg, R. & Shreyam, R. Emg Signal Analysis ofHealthy and Neuropathic Individuals. IOP Conf Ser Mater Sci Eng 225,012128 (2017).
3. Coorevits, P., Danneels, L., Cambier, D., Ramon, H. & Vanderstraeten, G.Assessment of the validity of the Biering-Sørensen test for measuring backmuscle fatigue based on EMG median frequency characteristics of backand hip muscles. Journal of Electromyography and Kinesiology 18, 997–1005 (2008).
4. Dugan, S. A. & Frontera, W. R. Muscle fatigue and muscle injury. PhysMed Rehabil Clin N Am 11, 385–403 (2000).
5. Phinyomark, A., Thongpanja, S., Hu, H., Phukpattaranont, P. & Limsakul,C. The Usefulness of Mean and Median Frequencies in ElectromyographyAnalysis. in Computational Intelligence in Electromyography Analysis - APerspective on Current Applications and Future Challenges 195–220(InTech, 2012). doi:10.5772/50639.
6. Knaflitz, M., Merletti, R. & De Luca, C. J. Inference of motor unit recruitmentorder in voluntary and electrically elicited contractions.https://doi.org/10.1152/jappl.1990.68.4.1657 68, 1657–1667 (1990).
7. Preston, D. C. Electromyography and Neuromuscular Disorders.Electromyography and Neuromuscular Disorders: Clinical-Electrophysiologic Correlations: Third Edition (Elsevier, 2013).doi:10.1016/C2010-0-68780-3.
8. Preston, D. C. Electromyography and Neuromuscular Disorders.Electromyography and Neuromuscular Disorders: Clinical-Electrophysiologic Correlations: Third Edition (Elsevier, 2013).doi:10.1016/C2010-0-68780-3.
9. Bonner, F. J. & Devleschoward, A. B. AAEM minimonograph #45: The earlydevelopment of electromyography. Muscle Nerve 18, 825–833 (1995).
10. Licht S. Electrodiagnosis and Electromyography, 3rd ed. New Haven, CT.vols 1–23 (Elizabeth Licht Publisher, 1971).
11. Bakiya, A. & Kamalanand, K. Information analysis on electromyogramsacquired using monopolar needle, concentric needle and surfaceelectrodes. 2018 International Conference on Recent Trends in Electrical,Control and Communication (RTECC) 240–244 (2019)doi:10.1109/RTECC.2018.8625631.
12. Guan, Y., Ding, Q., Liu, M., Niu, J. & Cui, L. Single-fiber EMG withconcentric electrodes in lambert-eaton myasthenia. Muscle Nerve 56, 253–257 (2017).213
13. Z’graggen, W. J., Trautmann, J. P., Boërio, D. & Bostock, H. Musclevelocity recovery cycles: Comparison between surface and needlerecordings. Muscle Nerve 53, 205–208 (2016).
14. Ekstrom, R. A., Donatelli, R. A. & Soderberg, G. L. Surfaceelectromyographic analysis of exercises for the trapezius and serratusanterior muscles. Journal of Orthopaedic and Sports Physical Therapy 33,247–258 (2003).
15. Rapeaux, A., Brunton, E., Nazarpour, K. & Constandinou, T. RecoveryDynamics of the High Frequency Alternating Current Nerve Block. bioRxiv235135 (2017) doi:10.1101/235135.
16. Geng, W. et al. Gesture recognition by instantaneous surface EMG images.Sci Rep 6, 6–13 (2016).
17. Merletti, R. & Muceli, S. Tutorial. Surface EMG detection in space and time:Best practices. Journal of Electromyography and Kinesiology 49, 102363(2019).
18. Larson, J. V. et al. Electrode characterization for use in a RegenerativePeripheral Nerve Interface. International IEEE/EMBS Conference onNeural Engineering, NER 629–632 (2013)doi:10.1109/NER.2013.6696013.
19. Yamagiwa, S., Sawahata, H., Ishida, M. & Kawano, T. Micro-electrodearrays for multi-channel motor unit EMG recording. Proceedings of theIEEE International Conference on Micro Electro Mechanical Systems(MEMS) 857–860 (2014) doi:10.1109/MEMSYS.2014.6765776.
20. Merletti, R., Botter, A., Troiano, A., Merlo, E. & Minetto, M. A. Technologyand instrumentation for detection and conditioning of the surfaceelectromyographic signal: State of the art. Clinical Biomechanics 24, 122–134 (2009).21. Loeb, G. E. & Gans, C. Electromyography for experimentalists. Universityof Chicago press (1987).22. Neuman, M. The Biomedical Engineering Handbook. (1999)doi:10.1201/9781420049510.sec5.23. Ferree, T. C., Luu, P., Russell, G. S. & Tucker, D. M. Scalp electrodeimpedance, infection risk, and EEG data quality. Clinical Neurophysiology112, 536–544 (2001).24. Cui, X. & Martin, D. C. Electrochemical deposition and characterizationofpoly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. 89,92–102 (2003).25. Ludwig, K. A. et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) polymercoatings facilitate smaller neural recording electrodes. J Neural Eng 8,(2011).26. Green, R. A. et al. Performance of conducting polymer electrodes forstimulating neuroprosthetics. J Neural Eng 10, (2013).21427. Luo, S. C. et al. Poly(3,4-ethylenedioxythiophene) (PEDOT)nanobiointerfaces: Thin, ultrasmooth, and functionalized PEDOT films within vitro and in vivo biocompatibility. Langmuir 24, 8071–8077 (2008).28. Chen, Y. et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) as interfacematerial for improving electrochemical performance of microneedles arraybaseddry electrode. Sens Actuators B Chem 188, 747–756 (2013).29. Lipomi, D. J. et al. Electronic properties of transparent conductive films ofPEDOT:PSS on stretchable substrates. Chemistry of Materials 24, 373–382 (2012).30. Zanello, L. P., Zhao, B., Hu, H. & Haddon, R. C. Bone cell proliferation oncarbon nanotubes. Nano Lett 6, 562–567 (2006).31. Pancrazio, J. J. Neural interfaces at the nanoscale. Nanomedicine 3, 823–830 (2008).32. Parker, R. A. et al. The use of a novel carbon nanotube coatedmicroelectrode array for chronic intracortical recording andmicrostimulation. Proceedings of the Annual International Conference ofthe IEEE Engineering in Medicine and Biology Society, EMBS 791–794(2012) doi:10.1109/EMBC.2012.6346050.33. Wang, K., Fishman, H. A., Dai, H. & Harris, J. S. Neural stimulation with acarbon nanotube microelectrode array. Nano Lett 6, 2043–2048 (2006).34. Shirata, K. et al. Robust myoelectric signal detection based on stochasticresonance using multiple-surface-electrode array made of carbonnanotube composite paper. Jpn J Appl Phys 55, (2016).35. Duffy, D. C., McDonald, J. C., Schueller, O. J. A. & Whitesides, G. M. Rapidprototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem70, 4974–4984 (1998).36. Mcdonald, J. C., Duffy, D. C., Anderson, J. R. & Chiu, D. T. Review GeneralFabrication of microfluidic systems in poly ( dimethylsiloxane ).Electrophoresis 21, 27–40 (2000).37. Jung, H. C. et al. CNT/PDMS composite flexible dry electrodesfor longtermECG monitoring. IEEE Trans Biomed Eng 59, 1472–1479 (2012).38. Lopes, P. A. et al. Soft Bioelectronic Stickers: Selection and Evaluation ofSkin-Interfacing Electrodes. Adv Healthc Mater 8, 1–11 (2019).39. Jung, J. M. et al. Development of PDMS-based flexible dry type SEMGelectrodes by micromachining technologies. Appl Phys A Mater SciProcess 116, 1395–1401 (2014).40. Tian, L. et al. Large-area MRI-compatible epidermal electronic interfacesfor prosthetic control and cognitive monitoring. Nat Biomed Eng 3, 194–205 (2019).41. Tang, L. et al. Printable metal-polymer conductors for highly stretchablebio-devices. iScience 4, 302–311 (2018).21542. Gabriel, C. Compilation of the dielectric properties of body tissues at RFand microwave frequencies. King’s Coll London (United Kingdom) Dept ofPhysics. (1996).43. Emily S. Kappenman and Steven J. Luck. The Effects of ElectrodeImpedance on Data Quality and Statistical Significance in ERP RecordingsEmily. Bone 23, 1–7 (2008).44. Hewson, D. J., Hogrel, J. Y., Langeron, Y. & Duchêne, J. Evolution inimpedance at the electrode-skin interface of two types of surface EMGelectrodes during long-term recordings. Journal of Electromyography andKinesiology 13, 273–279 (2003).45. Day, B. S. Important Factors in Surface EMG Measurement. Measurement1–17 (2002).46. Cogan, S. F. Neural Stimulation and Recording Electrodes. Annu RevBiomed Eng 10, 275–309 (2008).47. Administration, U. S. F. and D. FDA Backgrounder on Platinum in SiliconeBreast Implants. (2008).48. Voskerician, G. et al. Biocompatibility and biofouling of MEMS drug deliverydevices. Biomaterials 24, 1959–1967 (2003).49. Irimia-Vladu, M., Głowacki, E. D., Voss, G., Bauer, S. & Sariciftci, N. S.Green and biodegradable electronics. Materials Today 15, 340–346 (2012).50. Tang, L., Mou, L., Zhang, W. & Jiang, X. Large-Scale Fabrication of HighlyElastic Conductors on a Broad Range of Surfaces. ACS Appl MaterInterfaces 11, 7138–7147 (2019).51. Tang, L., Yang, S., Zhang, K. & Jiang, X. Skin Electronics fromBiocompatible In Situ Welding Enabled By Intrinsically Sticky Conductors.Advanced Science 9, 2202043 (2022).52. Tan, P. et al. Solution-processable, soft, self-adhesive, and conductivepolymer composites for soft electronics. Nat Commun 13, 358 (2022).53. Merletti, R., Farina, D. & Granata, A. Non-invasive assessment of motorunit properties with linear electrode arrays. Electroencephalogr ClinNeurophysiol Suppl 50, 293–300 (1999).54. Merletti, R. & Cerone, G. L. Tutorial. Surface EMG detection, conditioningand pre-processing: Best practices. Journal of Electromyography andKinesiology 54, 102440 (2020).55. Dobloug, G. C., Svensson, J., Lundberg, I. E. & Holmqvist, M. Mortality inidiopathic inflammatory myopathy: Results from a Swedish nationwidepopulation-based cohort study. Ann Rheum Dis 77, 40–47 (2018).56. Sarasola-Sanz, A. et al. A hybrid brain-machine interface based on EEGand EMG activity for the motor rehabilitation of stroke patients. IEEEInternational Conference on Rehabilitation Robotics 895–900 (2017)doi:10.1109/ICORR.2017.8009362.21657. NINDS. Idiopathic Inflammatory Myopathy Page. NIH Publication (2020).58. Blijham, P. J., Hengstman, G. J. D., Ter Laak, H. J., Van Engelen, B. G. M.& Zwarts, M. J. Muscle-fiber conduction velocity and electromyography asdiagnostic tools in patients with suspected inflammatory myopathy: Aprospective study. Muscle Nerve 29, 46–50 (2004).59. Donnan, G., Fisher, M., Macleod, M. & Davis, S. Stroke. The Lancet 371,1612–1623 (2008).60. Klein, C. S., Li, S., Hu, X. & Li, X. Editorial: Electromyography (EMG)Techniques for the Assessment and Rehabilitation of Motor ImpairmentFollowing Stroke. Front Neurol 9, 1–3 (2018).61. Cincotti, F. et al. EEG-based brain-computer interface to support poststrokemotor rehabilitation of the upper limb. Proceedings of the AnnualInternational Conference of the IEEE Engineering in Medicine and BiologySociety, EMBS 4112–4115 (2012) doi:10.1109/EMBC.2012.6346871.62. NINDS. NINDS Multiple Sclerosis Information Page. National Institute ofNeurological Disorders and Stroke. (2015).63. Sarova ‐ Pinhas, I., Achiron, A., Gilad, R. & Lampl, Y. Peripheralneuropathy in multiple sclerosis: a clinical and electrophysiologic study.Acta Neurol Scand 91, 234–238 (1995).64. NINDS. Myasthenia Gravis Fact Sheet. NIH Publication (2020).65. Chiou-Tan, F. Y. et al. Literature review of the usefulness of repetitive nervestimulation and single fiber EMG in the electrodiagnostic evaluation ofpatients with suspected myasthenia gravis or Lambert-Eaton myasthenicsyndrome. Muscle Nerve 24, 1239–1247 (2001).66. NINDS. Parkinson’s Disease Information Page. NIH Publication (2016).67. Robichaud, J. A. et al. Variability of EMG patterns: A potentialneurophysiological marker of Parkinson’s disease? ClinicalNeurophysiology 120, 390–397 (2009).68. Dayalu, P. & Albin, R. L. Huntington Disease: Pathogenesis and Treatment.Neurol Clin 33, 101–114 (2015).69. Siedenberg, R., Goodin, D. S. & Aminoff, M. J. Changes of forearm EMGand cerebral evoked potentials following sudden muscle stretch in patientswith huntington’s disease. Muscle Nerve 22, 1557–1563 (1999).70. Pandyan, A. D. et al. Spasticity: Clinical perceptions, neurological realitiesand meaningful measurement. Disabil Rehabil 27, 2–6 (2005).71. Albani, G. et al. Use of surface EMG for evaluation of upper limb spasticityduring botulinum toxin therapy in stroke patients. Funct Neurol 25, 103–107 (2010).72. Wallace, D. M., Ross, B. H. & Thomas, C. K. Motor unit behavior duringclonus. J Appl Physiol 99, 2166–2172 (2005).21773. Mummidisetty, C. K., Bohórquez, J. & Thomas, C. K. Automatic analysis ofEMG during clonus. J Neurosci Methods 204, 35–43 (2012).74. Hammer, G. D. & McPhee, S. J. Pathophysiology of disease : anintroduction to clinical medicine (6th ed.). New York: McGraw-Hill Medical(2010).75. Beniczky, S., Conradsen, I., Henning, O., Fabricius, M. & Wolf, P.Automated real-time detection of tonic-clonic seizures using a wearableEMG device. Neurology 90, e428–e434 (2018).76. Boulton, A. J. M. Management of Diabetic Peripheral Neuropathy.CLINICAL DIABETES 23, 9–15 (2005).77. Mete, T. et al. Comparison of efficiencies of michigan neuropathy screeninginstrument, neurothesiometer, and electromyography for diagnosis ofdiabetic neuropathy. Int J Endocrinol 2013, (2013).78. Liu, S., Reed, S. N., Higgins, M. J., Titus, M. S. & Kramer-Bottiglio, R. Oxiderupture-induced conductivity in liquid metal nanoparticles by laser andthermal sintering. Nanoscale 11, 17615–17629 (2019).79. Liao, J. & Majidi, C. Muscle-Inspired Linear Actuators by ElectrochemicalOxidation of Liquid Metal Bridges. Advanced Science 9, 2201963 (2022).80. Lin, Z., Gao, C., Wang, D. & He, Q. Bubble-Propelled Janus Gallium/ZincMicromotors for the Active Treatment of Bacterial Infections. AngewandteChemie International Edition 60, 8750–8754 (2021).81. Hao, X. P. et al. Self-Shaping Soft Electronics Based on PatternedHydrogel with Stencil-Printed Liquid Metal. Adv Funct Mater 31, 2105481(2021).82. Park, Y. G., An, H. S., Kim, J. Y. & Park, J. U. High-resolution,reconfigurable printing of liquid metals with three-dimensional structures.Sci Adv 5, (2019).83. Lin, Y. et al. Vacuum filling of complex microchannels with liquid metal. LabChip 17, 3043–3050 (2017).84. Kim, M. gu, Brown, D. K. & Brand, O. Nanofabrication for all-soft and highdensityelectronic devices based on liquid metal. Nature Communications2020 11:1 11, 1–11 (2020).85. Guo, R. et al. One-Step Liquid Metal Transfer Printing: Toward Fabricationof Flexible Electronics on Wide Range of Substrates. Adv Mater Technol 3,1800265 (2018).86. Khoshmanesh, K. et al. Liquid metal enabled microfluidics. Lab Chip 17,974–993 (2017).87. Yu, H. et al. Laser-Generated Supranano Liquid Metal as Efficient ElectronMediator in Hybrid Perovskite Solar Cells. Advanced Materials 32, 2001571(2020).88. Yu, F. et al. Ga-In liquid metal nanoparticles prepared by physical vapor218deposition. Progress in Natural Science: Materials International 28, 28–33(2018).89. Chen, S. & Liu, J. Spontaneous Dispersion and Large-Scale Deformationof Gallium-Based Liquid Metal Induced by Ferric Ions. Journal of PhysicalChemistry B 123, 2439–2447 (2019).90. Zhang, M. et al. Bio-Inspired Differential Capillary Migration of AqueousLiquid Metal Ink for Rapid Fabrication of High-Precision Monolayer andMultilayer Circuits. Adv Funct Mater 33, 2215050 (2023).91. Ding, L. et al. In Situ Deposition of Skin-Adhesive Liquid Metal Particleswith Robust Wear Resistance for Epidermal Electronics. Nano Lett 22,4482–4490 (2022).92. Kim, S., Kim, S., Hong, K., Dickey, M. D. & Park, S. Liquid-Metal-CoatedMagnetic Particles toward Writable, Nonwettable, Stretchable CircuitBoards, and Directly Assembled Liquid Metal-Elastomer Conductors. ACSAppl Mater Interfaces 14, 37110–37119 (2022).93. Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomouslyelectrically self-healing liquid metal–elastomer composite for robust softmatterrobotics and electronics. Nature Materials 2018 17:7 17, 618–624(2018).94. Tang, L. et al. Metal-hygroscopic polymer conductors that can secretesolders for connections in stretchable devices. Mater Horiz 7, 1186–1194(2020).95. Pan, C. et al. Visually Imperceptible Liquid-Metal Circuits for Transparent,Stretchable Electronics with Direct Laser Writing. Advanced Materials 30,1706937 (2018).96. Niu, Y. et al. Thermal-Sinterable EGaIn Nanoparticle Inks for HighlyDeformable Bioelectrode Arrays. Adv Healthc Mater 12, (2023).97. Lee, W. et al. Universal assembly of liquid metal particles in polymersenables elastic printed circuit board. Science (1979) 378, 637–641 (2022).98. Yuan, X. et al. Multifunctionally wearable monitoring with gelatin hydrogelelectronics of liquid metals. Mater Horiz 9, 961–972 (2022).99. Ma, Z. et al. Permeable superelastic liquid-metal fibre mat enablesbiocompatible and monolithic stretchable electronics. Nature Materials2021 20:6 20, 859–868 (2021).100. Tang, L., Shang, J. & Jiang, X. Multilayered electronic transfer tattoo thatcan enable the crease amplification effect. Sci Adv 7, eabe3778 (2021).101. Zhao, R. et al. Designable Electrical/Thermal Coordinated Dual-RegulationBased on Liquid Metal Shape Memory Polymer Foam for Smart Switch.Advanced Science 10, 2205428 (2023).102. Cheng, J. et al. Wet ‐ Adhesive Elastomer for Liquid Metal ‐ BasedConformal Epidermal Electronics. Adv Funct Mater 32, 2200444 (2022).219103. Dong, R. et al. Printed Stretchable Liquid Metal Electrode Arrays for In VivoNeural Recording. Small 17, 2006612 (2021).104. Reis Carneiro, M., Majidi, C. & Tavakoli, M. Multi ‐ Electrode PrintedBioelectronic Patches for Long ‐ Term Electrophysiological Monitoring.Adv Funct Mater 32, 2205956 (2022).105. Li, Y. et al. A Highly Stretchable and Permeable Liquid Metal MicromeshConductor by Physical Deposition for Epidermal Electronics. ACS ApplMater Interfaces 14, 13713–13721 (2022).106. Zhong, L. et al. Stretchable Liquid Metal-Based Metal-Polymer Conductorsfor Fully Screen-Printed Biofuel Cells. Anal Chem 94, 16738–16745 (2022).107. Lee, W. et al. Universal assembly of liquid metal particles in polymersenables elastic printed circuit board. Science (1979) 378, 637–641 (2022).108. Kim, K. et al. Highly Sensitive and Wearable Liquid Metal‐Based PressureSensor for Health Monitoring Applications: Integration of a 3D‐PrintedMicrobump Array with the Microchannel. Adv Healthc Mater 8, (2019).109. Wang, Z., Volinsky, A. A. & Gallant, N. D. Crosslinking effect onpolydimethylsiloxane elastic modulus measured by custom-builtcompression instrument. J Appl Polym Sci 131, n/a-n/a (2014).110. Kayser, L. V. & Lipomi, D. J. Stretchable conductive polymers andcomposites based on PEDOT and PEDOT:PSS. Advanced Materials 31,1806133 (2019).111. Zhao, Y. et al. Ultra-conformal skin electrodes with synergisticallyenhanced conductivity for long-time and low-motion artifact epidermalelectrophysiology. Nat Commun 12, 1–12 (2021).112. Zhang, L. et al. Fully organic compliant dry electrodes self-adhesive to skinfor long-term motion-robust epidermal biopotential monitoring. NatCommun 11, 4683 (2020).113. Li, P., Sun, K. & Ouyang, J. Stretchable and Conductive Polymer FilmsPrepared by Solution Blending. ACS Appl Mater Interfaces 7, 18415–18423 (2015).114. Liu, T. et al. Hydrogen‐Bonded Polymer–Small Molecule Complexes withTunable Mechanical Properties. Macromol Rapid Commun 39, 1800050(2018).115. Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Musselinspiredsurface chemistry for multifunctional coatings. Science (1979) 318,426–430 (2007).116. Han, L. et al. Mussel-Inspired Adhesive and Tough Hydrogel Based onNanoclay Confined Dopamine Polymerization. ACS Nano 11, 2561–2574(2017).117. Kim, S., Saha, B., Boykin, J. & Chung, H. Gallol containing adhesivepolymers. Journal of Macromolecular Science, Part A 59, 625–645 (2022).220118. Oh, D. X., Kim, S., Lee, D. & Hwang, D. S. Tunicate-mimetic nanofibroushydrogel adhesive with improved wet adhesion. Acta Biomater 20, 104–112 (2015).119. Yang, Q. et al. A bioinspired gallol-functionalized collagen as wet-tissueadhesive for biomedical applications. Chemical Engineering Journal 417,127962 (2021).120. Lee, H., Scherer, N. F. & Messersmith, P. B. Single-molecule mechanicsof mussel adhesion. Proceedings of the National Academy of Sciences 103,12999–13003 (2006).121. Lee, D. et al. VATA: A Poly(vinyl alcohol)- And Tannic Acid-Based NontoxicUnderwater Adhesive. ACS Appl Mater Interfaces 12, 20933–20941 (2020).122. De Luca, C. J., Donald Gilmore, L., Kuznetsov, M. & Roy, S. H. Filteringthe surface EMG signal: Movement artifact and baseline noisecontamination. J Biomech 43, 1573–1579 (2010).123. Walton, C., Li, Z., Pennings, A., Agur, A. & Elmaraghy, A. A 3-dimensionalanatomic study of the distal biceps tendon. Orthop J Sports Med 3,232596711558511 (2015).124. Tankisi, H. et al. Standards of instrumentation of EMG. ClinicalNeurophysiology 131, 243–258 (2020).125. Kabiri Ameri, S. et al. Graphene electronic tattoo sensors. ACS Nano 11,7634–7641 (2017).126. Sun, Y. & Yu, X. B. Capacitive biopotential measurement forelectrophysiological signal acquisition: a review. IEEE Sens J 16, 2832–2853 (2016).127. Lee, S. et al. Nanomesh pressure sensor for monitoring finger manipulationwithout sensory interference. Science (1979) 370, 966–970 (2020).128. Zhao, H. et al. Compliant 3D frameworks instrumented with strain sensorsfor characterization of millimeter-scale engineered muscle tissues. ProcNatl Acad Sci U S A 118, e2100077118 (2021).129. Oh, Y. S. et al. Battery-free, wireless soft sensors for continuous multi-sitemeasurements of pressure and temperature from patients at risk forpressure injuries. Nat Commun 12, 5008 (2021).130. Song, E. et al. Miniaturized electromechanical devices for thecharacterization of the biomechanics of deep tissue. Nat Biomed Eng 5,759–771 (2021).131. Yu, Y. et al. Biofuel-powered soft electronic skin with multiplexed andwireless sensing for human-machine interfaces. Sci Robot 5, eaaz7946(2020).132. Moin, A. et al. A wearable biosensing system with in-sensor adaptivemachine learning for hand gesture recognition. Nat Electron 4, 54–63(2021).221133. Ting, J. E. et al. Sensing and decoding the neural drive to paralyzedmuscles during attempted movements of a person with tetraplegia using asleeve array. J Neurophysiol 127, 2104–2118 (2021).134. Driscoll, N. et al. MXene-infused bioelectronic interfaces for multiscaleelectrophysiology and stimulation. Sci Transl Med 13, eabf8629 (2021).135. Wang, S. et al. Intrinsically stretchable electronics with ultrahighdeformability to monitor dynamically moving organs. Sci Adv 8, eabl5511(2022).136. Wang, Y. et al. A highly stretchable, transparent, and conductive polymer.Sci Adv 3, e1602076 (2017).137. Yang, Y., Deng, H. & Fu, Q. Recent progress on PEDOT:PSS basedpolymer blends and composites for flexible electronics and thermoelectricdevices. Mater Chem Front 4, 3130–3152 (2020).138. Donahue, M. J. et al. Tailoring PEDOT properties for applications inbioelectronics. Materials Science and Engineering: R: Reports 140,100546 (2020).139. Romyen, N., Thongyai, S., Praserthdam, P. & Sotzing, G. A. Enhancementof poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonate) properties bypoly(vinyl alcohol) and doping agent as conductive nano-thin film forelectronic application. Journal of Materials Science: Materials inElectronics 24, 2897–2905 (2013).140. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. NatRev Mater 1, 16071 (2016).141. Liu, S., Rao, Y., Jang, H., Tan, P. & Lu, N. Strategies for body-conformableelectronics. Matter 5, 1104–1136 (2022).142. Dierendonck, M. et al. Nanoporous hydrogen bonded polymericmicroparticles: Facile and economic production of cross presentationpromoting vaccine carriers. Adv Funct Mater 24, 4634–4644 (2014).143. Li, H. et al. Ternary Complex Coacervate of PEG/TA/Gelatin as ReinforcedBioadhesive for Skin Wound Repair. ACS Appl Mater Interfaces 14,18097–18109 (2022).144. Li, G., Wang, S. & Duan, Y. Y. Towards gel-free electrodes: A systematicstudy of electrode-skin impedance. Sens Actuators B Chem 241, 1244–1255 (2017).145. Harati, A. & Jahanshahi, A. A reliable stretchable dry electrode formonitoring of EEG signals. Sens Actuators A Phys 326, 112727 (2021).146. Alban, M. V., Lee, H., Moon, H. & Yoo, S. Micromolding fabrication ofbiocompatible dry micro-pyramid array electrodes for wearable biopotentialmonitoring. Flexible and Printed Electronics 6, 045008 (2021).147. Jiang, Y. et al. Flexible and stretchable dry active electrodes with pdms andsilver flakes for bio-potentials sensing systems. IEEE Sens J 21, 12255–12268 (2021).222148. Yoon, S. et al. Highly stretchable metal-polymer hybrid conductors forwearable and self-cleaning sensors. NPG Asia Mater 13, 4 (2021).149. Yun, I. et al. Stable Bioelectric Signal Acquisition Using an EnlargedSurface-Area Flexible Skin Electrode. ACS Appl Electron Mater 3, 1842–1851 (2021).150. Li, Q. et al. Highly Thermal-Wet Comfortable and Conformal Silk-BasedElectrodes for On-Skin Sensors with Sweat Tolerance. ACS Nano 15,9955–9966 (2021).151. Tang, W. et al. Delamination-Resistant Imperceptible Bioelectrode forRobust Electrophysiological Signals Monitoring. ACS Mater Lett 3, 1385–1393 (2021).152. Won, Y. et al. Biocompatible, Transparent, and High-Areal-CoverageKirigami PEDOT:PSS Electrodes for Electrooculography-Derived Human-Machine Interactions. ACS Sens 6, 967–975 (2021).153. Blau, R. et al. Intrinsically Stretchable Block Copolymer Based onPEDOT:PSS for Improved Performance in Bioelectronic Applications. ACSAppl Mater Interfaces 14, 4823–4835 (2022).154. Zhou, X. et al. Self-healing, stretchable, and highly adhesive hydrogels forepidermal patch electrodes. Acta Biomater 139, 296–306 (2022).155. Wang, S. et al. Self-adhesive, stretchable, biocompatible, and conductivenonvolatile eutectogels as wearable conformal strain and pressure sensorsand biopotential electrodes for precise health monitoring. ACS Appl MaterInterfaces 13, 20735–20745 (2021).156. Cao, J. et al. Stretchable and Self-Adhesive PEDOT:PSS Blend with HighSweat Tolerance as Conformal Biopotential Dry Electrodes. ACS ApplMater Interfaces 14, 39159–39171 (2022).157. Hazlett, R. L., Mcleod, D. R. & Hoehn-saric, R. Muscle tension ingeneralized anxiety disorder: Elevated muscle tonus or agitated movement?Psychophysiology 31, 189–195 (1994).158. Merletti, R. & Roy, S. Myoelectric and mechanical manifestations of musclefatigue in voluntary contractions. Journal of Orthopaedic and SportsPhysical Therapy 24, 342–353 (1996).159. de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. Capillarity and WettingPhenomena. Capillarity and Wetting Phenomena (Springer New York,2004). doi:10.1007/978-0-387-21656-0.160. Pal, R. Effect of droplet size on the rheology of emulsions. AIChE Journal42, 3181–3190 (1996).161. Shu, J. et al. Particle-based porous materials for the rapid and spontaneousdiffusion of liquid metals. ACS Appl Mater Interfaces 12, 11163–11170(2020).162. Li, F. et al. Magnetically- and electrically-controllable functional liquid metaldroplets. Adv Mater Technol 4, 1800694 (2019).223163. Yun, G. et al. Liquid metal-filled magnetorheological elastomer with positivepiezoconductivity. Nat Commun 10, 1300 (2019).164. Vallem, V. et al. A soft variable‐area electrical‐double‐layer energyharvester. Advanced Materials 33, 2103142 (2021).165. Lu, Y. et al. Mussel-inspired multifunctional integrated liquid metal-basedmagnetic suspensions with rheological, magnetic, electrical, and thermalreinforcement. ACS Appl Mater Interfaces 13, 5256–5265 (2021).166. Wang, H. et al. A liquid gripper based on phase transitional metallicferrofluid. Adv Funct Mater 31, 2100274 (2021).167. Yuan, B., Sun, X., Wang, H. & Liu, J. Liquid metal bubbles. Appl MaterToday 24, 101151 (2021).168. Cole, T., Khoshmanesh, K. & Tang, S.-Y. Liquid metal enabled biodevices.Advanced Intelligent Systems 3, 2000275 (2021).169. Mayyas, M. et al. Gallium‐based liquid metal reaction media for interfacialprecipitation of bismuth nanomaterials with controlled phases andmorphologies. Adv Funct Mater 32, 2108673 (2022).170. Mou, L. et al. Highly stretchable and biocompatible liquid metal‐elastomerconductors for self‐healing electronics. Small 16, 2005336 (2020).171. Ding, L. et al. A soft, conductive external stent inhibits intimal hyperplasiain vein grafts by electroporation and mechanical restriction. ACS Nano 14,16770–16780 (2020).172. Cheng, S. et al. Electronic blood vessel. Matter 3, 1664–1684 (2020).173. Hang, C. et al. A soft and absorbable temporary epicardial pacing wire.Advanced Materials 33, 2101447 (2021).174. Zhong, B., Jiang, K., Wang, L. & Shen, G. Wearable Sweat Loss MeasuringDevices: From the Role of Sweat Loss to Advanced Mechanisms andDesigns. Advanced Science 9, (2022).175. Ribeiro, A. H. et al. Automatic diagnosis of the 12-lead ECG using a deepneural network. Nat Commun 11, 1760 (2020).176. Reaz, M. B. I., Hussain, M. S. & Mohd-Yasin, F. Techniques of EMG signalanalysis: Detection, processing, classification and applications. Biol ProcedOnline 8, 11–35 (2006).177. Jang, H. et al. Graphene e-tattoos for unobstructive ambulatoryelectrodermal activity sensing on the palm enabled by heterogeneousserpentine ribbons. Nat Commun 13, 6604 (2022).178. S. Srinivasan, S. & M. Herr, H. A cutaneous mechanoneural interface forneuroprosthetic feedback. Nat Biomed Eng 6, 731–740 (2022).179. Farina, D. et al. Toward higher-performance bionic limbs for wider clinicaluse. Nat Biomed Eng 7, 473–485 (2021).224180. Gu, G. et al. A soft neuroprosthetic hand providing simultaneousmyoelectric control and tactile feedback. Nat Biomed Eng 7, 589–598(2021).181. Bonizzato, M. & Martinez, M. An intracortical neuroprosthesis immediatelyalleviates walking deficits and improves recovery of leg control after spinalcord injury. Sci Transl Med 13, eabb4422 (2021).182. Vu, P. P. et al. A regenerative peripheral nerve interface allows real-timecontrol of an artificial hand in upper limb amputees. Sci Transl Med 12,eaay2857 (2020).183. Choi, Y. S. et al. Stretchable, dynamic covalent polymers for soft, long-livedbioresorbable electronic stimulators designed to facilitate neuromuscularregeneration. Nat Commun 11, 5990 (2020).184. Miyamoto, R. G., Elser, F. & Millett, P. J. Distal biceps tendon injuries.Journal of Bone and Joint Surgery 92, 2128–2138 (2010).185. Mao, L. et al. Neurologic manifestations of hospitalized patients withcoronavirus disease 2019 in Wuhan, China. JAMA Neurol 77, 683 (2020).186. Evans, W. J. et al. Metabolic changes following eccentric exercise intrained and untrained men. J Appl Physiol 61, 1864–1868 (1986).187. McCully, K. K. & Faulkner, J. A. Characteristics of lengthening contractionsassociated with injury to skeletal muscle fibers. J Appl Physiol 61, 293–299(1986).188. McManus, L., De Vito, G. & Lowery, M. M. Analysis and biophysics ofsurface EMG for physiotherapists and kinesiologists: toward a commonlanguage with rehabilitation engineers. Front Neurol 11, 576729 (2020).189. Muceli, S. & Farina, D. Simultaneous and proportional estimation of handkinematics from EMG during mirrored movements at multiple degrees-offreedom.IEEE Transactions on Neural Systems and RehabilitationEngineering 20, 371–378 (2012).190. Muceli, S., Falla, D. & Farina, D. Reorganization of muscle synergies duringmultidirectional reaching in the horizontal plane with experimental musclepain. J Neurophysiol 111, 1615–1630 (2014).191. Merletti, R., Rainoldi, A. & Farina, D. Surface electromyography fornoninvasive characterization of muscle. Exerc Sport Sci Rev 29, 20–25(2001).192. Merletti, R., Farina, D. & Gazzoni, M. The linear electrode array: A usefultool with many applications. Journal of Electromyography and Kinesiology13, 37–47 (2003).193. Merletti, R. et al. Multichannel surface EMG for the non-invasiveassessment of the anal sphincter muscle. Digestion 69, 112–122 (2004).194. Søgaard, K., Christensen, H., Jensen, B. R., Finsen, L. & Sjøgaard, G.Motor control and kinetics during low level concentric and eccentriccontractions in man. Electroencephalography and Clinical225Neurophysiology/Electromyography and Motor Control 101, 453–460(1996).195. Madeleine, P., Bajaj, P., Søgaard, K. & Arendt-Nielsen, L.Mechanomyography and electromyography force relationships duringconcentric, isometric and eccentric contractions. Journal ofElectromyography and Kinesiology 11, 113–121 (2001).196. Mchugh, M. P., Tyler, T. F., Greenberg, S. C. & Gleim, G. W. Differencesin activation patterns between eccentric and concentric quadricepscontractions. J Sports Sci 20, 83–91 (2002).197. Dunlap, S. S., Aziz, M. A. & Ziermann, J. M. Anatomical variations of thedeep head of Cruveilhier of the flexor pollicis brevis and its significance forthe evolution of the precision grip. PLoS One 12, e0187402 (2017).198. Ranavolo, A. et al. Surface electromyography for risk assessment in workactivities designed using the “revised NIOSH lifting equation”. Int J IndErgon 68, 34–45 (2018).199. Oliveira, A. de S. C. & Gonçalves, M. EMG amplitude and frequencyparameters of muscular activity: Effect of resistance training based onelectromyographic fatigue threshold. Journal of Electromyography andKinesiology 19, 295–303 (2009).200. Iridiastadi, H. & Nussbaum, M. A. Muscle fatigue and endurance duringrepetitive intermittent static efforts: development of prediction models.Ergonomics 49, 344–360 (2006).201. Robi, K., Jakob, N., Matevz, K. & Matjaz, V. The physiology of sportsinjuries and repair processes. Current Issues in Sports and ExerciseMedicine These (2013).202. Mills, K. R. The basics of electromyography. J Neurol Neurosurg Psychiatry76 Suppl 2, ii32-5 (2005).

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/719179
专题南方科技大学
工学院_生物医学工程系
推荐引用方式
GB/T 7714
Yang SJ. Stretchable Surface Electromyography Electrode Array Based on Liquid Metal and Conductive Polymer[D]. 英国. 利兹大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11959001-杨帅健-生物医学工程系(6826KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨帅健]的文章
百度学术
百度学术中相似的文章
[杨帅健]的文章
必应学术
必应学术中相似的文章
[杨帅健]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。