题名 | Analytical convergence regions of accelerated gradient descent in nonconvex optimization under Regularity Condition |
作者 | |
通讯作者 | Zhang,Wei |
发表日期 | 2020-03-01
|
DOI | |
发表期刊 | |
ISSN | 0005-1098
|
EISSN | 1873-2836
|
卷号 | 113 |
摘要 | There is a growing interest in using robust control theory to analyze and design optimization and machine learning algorithms. This paper studies a class of nonconvex optimization problems whose cost functions satisfy the so-called Regularity Condition (RC). Empirical studies show that accelerated gradient descent (AGD) algorithms (e.g. Nesterov's acceleration and Heavy-ball) with proper initializations often work well in practice. However, the convergence of such AGD algorithms is largely unknown in the literature. The main contribution of this paper is the analytical characterization of the convergence regions of AGD under RC via robust control tools. Since such optimization problems arise frequently in many applications such as phase retrieval, training of neural networks and matrix sensing, our result shows promise of robust control theory in these areas. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Science Foundation[CNS-1552838]
; Office of Naval Research[N00014-18-1-2142]
; Army Research Office[W911NF-18-1-0303]
|
WOS研究方向 | Automation & Control Systems
; Engineering
|
WOS类目 | Automation & Control Systems
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000514216600033
|
出版者 | |
EI入藏号 | 20195207932045
|
EI主题词 | Cost functions
; Gradient methods
; Learning algorithms
; Machine learning
; Robust control
|
EI分类号 | Automatic Control Principles and Applications:731
; Optimization Techniques:921.5
; Numerical Methods:921.6
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85076886086
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:8
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/72574 |
专题 | 工学院_机械与能源工程系 |
作者单位 | 1.Department of Electrical and Computer Engineering,The Ohio State University,Columbus,43210,United States 2.Department of Electrical and Computer Engineering,Carnegie Mellon University,Pittsburgh,15213,United States 3.Department of Electrical and Computer Engineering and Coordinated Science Laboratory,University of Illinois at Urbana-Champaign,Urbana,61801,United States 4.Department of Mechanical and Energy Engineering,Southern University of Science and Technology (SUSTech),Shenzhen,518055,China |
通讯作者单位 | 机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Xiong,Huaqing,Chi,Yuejie,Hu,Bin,et al. Analytical convergence regions of accelerated gradient descent in nonconvex optimization under Regularity Condition[J]. AUTOMATICA,2020,113.
|
APA |
Xiong,Huaqing,Chi,Yuejie,Hu,Bin,&Zhang,Wei.(2020).Analytical convergence regions of accelerated gradient descent in nonconvex optimization under Regularity Condition.AUTOMATICA,113.
|
MLA |
Xiong,Huaqing,et al."Analytical convergence regions of accelerated gradient descent in nonconvex optimization under Regularity Condition".AUTOMATICA 113(2020).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Xiong-2020-Analytica(886KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论