中文版 | English
题名

RSPSSL: A novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization

作者
通讯作者Chen,Gina Jinna
发表日期
2024-12-01
DOI
发表期刊
ISSN
2095-5545
EISSN
2047-7538
卷号13期号:1
摘要
Raman spectroscopy has tremendous potential for material analysis with its molecular fingerprinting capability in many branches of science and technology. It is also an emerging omics technique for metabolic profiling to shape precision medicine. However, precisely attributing vibration peaks coupled with specific environmental, instrumental, and specimen noise is problematic. Intelligent Raman spectral preprocessing to remove statistical bias noise and sample-related errors should provide a powerful tool for valuable information extraction. Here, we propose a novel Raman spectral preprocessing scheme based on self-supervised learning (RSPSSL) with high capacity and spectral fidelity. It can preprocess arbitrary Raman spectra without further training at a speed of ~1 900 spectra per second without human interference. The experimental data preprocessing trial demonstrated its excellent capacity and signal fidelity with an 88% reduction in root mean square error and a 60% reduction in infinite norm (L) compared to established techniques. With this advantage, it remarkably enhanced various biomedical applications with a 400% accuracy elevation (ΔAUC) in cancer diagnosis, an average 38% (few-shot) and 242% accuracy improvement in paraquat concentration prediction, and unsealed the chemical resolution of biomedical hyperspectral images, especially in the spectral fingerprint region. It precisely preprocessed various Raman spectra from different spectroscopy devices, laboratories, and diverse applications. This scheme will enable biomedical mechanism screening with the label-free volumetric molecular imaging tool on organism and disease metabolomics profiling with a scenario of high throughput, cross-device, various analyte complexity, and diverse applications.
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
Scopus记录号
2-s2.0-85185454763
来源库
Scopus
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/729035
专题工学院_海洋科学与工程系
作者单位
1.State Key Laboratory of Optical Fiber and Cable Manufacture Technology,Guangdong Key Laboratory of Integrated Optoelectronics Intellisense,Department of EEE,Southern University of Science and Technology,Shenzhen,518055,China
2.College of Optical and Electronic Technology,China Jiliang University,Hangzhou,310018,China
3.Department of Nasopharyngeal Carcinoma,Sun Yat-sen University Cancer Center,State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy,Guangzhou,510060,China
4.Department of Ocean Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
5.Department of Nephrology,Chaozhou People’s Hospital,Chaozhou,521011,China
6.Clinical Research Design Division,Sun Yat-sen Memorial Hospital,Guangzhou,Guangdong,510120,China
7.School of Automation,Northwestern Polytechnical University,Xi’an,Shaanxi,710072,China
8.Department of Biomedical Engineering,The Chinese University of Hong Kong,Hong Kong
9.Guangdong Provincial Key Laboratory of Nanophotonic Manipulation,Institute of Nanophotonics,Jinan University,Guangzhou,511443,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Hu,Jiaqi,Chen,Gina Jinna,Xue,Chenlong,et al. RSPSSL: A novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization[J]. Light: Science and Applications,2024,13(1).
APA
Hu,Jiaqi.,Chen,Gina Jinna.,Xue,Chenlong.,Liang,Pei.,Xiang,Yanqun.,...&Shum,Perry Ping.(2024).RSPSSL: A novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization.Light: Science and Applications,13(1).
MLA
Hu,Jiaqi,et al."RSPSSL: A novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization".Light: Science and Applications 13.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hu,Jiaqi]的文章
[Chen,Gina Jinna]的文章
[Xue,Chenlong]的文章
百度学术
百度学术中相似的文章
[Hu,Jiaqi]的文章
[Chen,Gina Jinna]的文章
[Xue,Chenlong]的文章
必应学术
必应学术中相似的文章
[Hu,Jiaqi]的文章
[Chen,Gina Jinna]的文章
[Xue,Chenlong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。