中文版 | English
题名

Hyperspectral sparse fusion using adaptive total variation regularization and superpixel-based weighted nuclear norm

作者
通讯作者Zhang,Jun
发表日期
2024-07-01
DOI
发表期刊
ISSN
0165-1684
卷号220
摘要
Many recent studies have shown that the adaptive total variation regularization has the advantage of better preserving local features of images compared with the celebrated total variation regularization. On the other hand, the superpixel-based weighted nuclear norm can compensate for the shortcomings of the superpixel-based standard nuclear norm, assigning different weights to singular values and improving flexibility. Inspired by these two factors, we propose two new hyperspectral sparse fusion models related to the adaptive total variation regularization and superpixel-based weighted nuclear norm. Furthermore, we design the alternating direction method of multipliers (ADMM) to efficiently solve the proposed models, with complexity and convergence analyses. Experimental results demonstrate that the proposed methods outperform several state-of-the-art methods both numerically and visually.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
EI入藏号
20241015698714
EI主题词
Image fusion
EI分类号
Data Processing and Image Processing:723.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85186651728
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/729044
专题理学院_统计与数据科学系
作者单位
1.Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing,Nanchang Institute of Technology,Jiangxi,Nanchang,330099,China
2.College of Science,Nanchang Institute of Technology,Jiangxi,Nanchang,330099,China
3.Department of Statistics and Data Science,Southern University of Science and Technology,Guangdong,Shenzhen,518055,China
4.National Centre for Applied Mathematics Shenzhen,Guangdong Province,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Lu,Jingjing,Zhang,Jun,Wang,Chao,et al. Hyperspectral sparse fusion using adaptive total variation regularization and superpixel-based weighted nuclear norm[J]. Signal Processing,2024,220.
APA
Lu,Jingjing,Zhang,Jun,Wang,Chao,&Deng,Chengzhi.(2024).Hyperspectral sparse fusion using adaptive total variation regularization and superpixel-based weighted nuclear norm.Signal Processing,220.
MLA
Lu,Jingjing,et al."Hyperspectral sparse fusion using adaptive total variation regularization and superpixel-based weighted nuclear norm".Signal Processing 220(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lu,Jingjing]的文章
[Zhang,Jun]的文章
[Wang,Chao]的文章
百度学术
百度学术中相似的文章
[Lu,Jingjing]的文章
[Zhang,Jun]的文章
[Wang,Chao]的文章
必应学术
必应学术中相似的文章
[Lu,Jingjing]的文章
[Zhang,Jun]的文章
[Wang,Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。