题名 | Hyperspectral sparse fusion using adaptive total variation regularization and superpixel-based weighted nuclear norm |
作者 | |
通讯作者 | Zhang,Jun |
发表日期 | 2024-07-01
|
DOI | |
发表期刊 | |
ISSN | 0165-1684
|
卷号 | 220 |
摘要 | Many recent studies have shown that the adaptive total variation regularization has the advantage of better preserving local features of images compared with the celebrated total variation regularization. On the other hand, the superpixel-based weighted nuclear norm can compensate for the shortcomings of the superpixel-based standard nuclear norm, assigning different weights to singular values and improving flexibility. Inspired by these two factors, we propose two new hyperspectral sparse fusion models related to the adaptive total variation regularization and superpixel-based weighted nuclear norm. Furthermore, we design the alternating direction method of multipliers (ADMM) to efficiently solve the proposed models, with complexity and convergence analyses. Experimental results demonstrate that the proposed methods outperform several state-of-the-art methods both numerically and visually. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
EI入藏号 | 20241015698714
|
EI主题词 | Image fusion
|
EI分类号 | Data Processing and Image Processing:723.2
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85186651728
|
来源库 | Scopus
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/729044 |
专题 | 理学院_统计与数据科学系 |
作者单位 | 1.Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing,Nanchang Institute of Technology,Jiangxi,Nanchang,330099,China 2.College of Science,Nanchang Institute of Technology,Jiangxi,Nanchang,330099,China 3.Department of Statistics and Data Science,Southern University of Science and Technology,Guangdong,Shenzhen,518055,China 4.National Centre for Applied Mathematics Shenzhen,Guangdong Province,Shenzhen,518055,China |
推荐引用方式 GB/T 7714 |
Lu,Jingjing,Zhang,Jun,Wang,Chao,et al. Hyperspectral sparse fusion using adaptive total variation regularization and superpixel-based weighted nuclear norm[J]. Signal Processing,2024,220.
|
APA |
Lu,Jingjing,Zhang,Jun,Wang,Chao,&Deng,Chengzhi.(2024).Hyperspectral sparse fusion using adaptive total variation regularization and superpixel-based weighted nuclear norm.Signal Processing,220.
|
MLA |
Lu,Jingjing,et al."Hyperspectral sparse fusion using adaptive total variation regularization and superpixel-based weighted nuclear norm".Signal Processing 220(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论