中文版 | English
题名

AIEgen-deep: Deep learning of single AIEgen-imaging pattern for cancer cell discrimination and preclinical diagnosis

作者
通讯作者Khoo,Bee Luan
发表日期
2024-06-01
DOI
发表期刊
ISSN
0956-5663
EISSN
1873-4235
卷号253
摘要
This study introduces AIEgen-Deep, an innovative classification program combining AIEgen fluorescent dyes, deep learning algorithms, and the Segment Anything Model (SAM) for accurate cancer cell identification. Our approach significantly reduces manual annotation efforts by 80%–90%. AIEgen-Deep demonstrates remarkable accuracy in recognizing cancer cell morphology, achieving a 75.9% accuracy rate across 26,693 images of eight different cell types. In binary classifications of healthy versus cancerous cells, it shows enhanced performance with an accuracy of 88.3% and a recall rate of 79.9%. The model effectively distinguishes between healthy cells (fibroblast and WBC) and various cancer cells (breast, bladder, and mesothelial), with accuracies of 89.0%, 88.6%, and 83.1%, respectively. Our method's broad applicability across different cancer types is anticipated to significantly contribute to early cancer detection and improve patient survival rates.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
ESI学科分类
CHEMISTRY
Scopus记录号
2-s2.0-85186491135
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/729051
专题工学院_生物医学工程系
作者单位
1.City University of Hong Kong,Kowloon,83 Tat Chee Avenue, Hong Kong,999077,China
2.Department of Biomedical Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE),Hong Kong SAR,China
4.School of Biomedical Engineering,Guangzhou Medical University,Guangzhou,China
5.College of Basic Medicine,Hebei University,Baoding,342 Yuhua West Road, Lianchi District,071000,China
6.Department of Precision Diagnostic and Therapeutic Technology,City University of Hong Kong,Futian-Shenzhen Research Institute,Shenzhen,518057,China
推荐引用方式
GB/T 7714
Hua,Haojun,Deng,Yanlin,Zhang,Jing,et al. AIEgen-deep: Deep learning of single AIEgen-imaging pattern for cancer cell discrimination and preclinical diagnosis[J]. Biosensors and Bioelectronics,2024,253.
APA
Hua,Haojun,Deng,Yanlin,Zhang,Jing,Zhou,Xiang,Zhang,Tianfu,&Khoo,Bee Luan.(2024).AIEgen-deep: Deep learning of single AIEgen-imaging pattern for cancer cell discrimination and preclinical diagnosis.Biosensors and Bioelectronics,253.
MLA
Hua,Haojun,et al."AIEgen-deep: Deep learning of single AIEgen-imaging pattern for cancer cell discrimination and preclinical diagnosis".Biosensors and Bioelectronics 253(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hua,Haojun]的文章
[Deng,Yanlin]的文章
[Zhang,Jing]的文章
百度学术
百度学术中相似的文章
[Hua,Haojun]的文章
[Deng,Yanlin]的文章
[Zhang,Jing]的文章
必应学术
必应学术中相似的文章
[Hua,Haojun]的文章
[Deng,Yanlin]的文章
[Zhang,Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。