中文版 | English
题名

High-dimensional sparse single–index regression via Hilbert–Schmidt independence criterion

作者
通讯作者Zhang,Jia
发表日期
2024-04-01
DOI
发表期刊
ISSN
0960-3174
EISSN
1573-1375
卷号34期号:2
摘要
Hilbert-Schmidt Independence Criterion (HSIC) has recently been introduced to the field of single-index models to estimate the directions. Compared with other well-established methods, the HSIC based method requires relatively weak conditions. However, its performance has not yet been studied in the prevalent high-dimensional scenarios, where the number of covariates can be much larger than the sample size. In this article, based on HSIC, we propose to estimate the possibly sparse directions in the high-dimensional single-index models through a parameter reformulation. Our approach estimates the subspace of the direction directly and performs variable selection simultaneously. Due to the non-convexity of the objective function and the complexity of the constraints, a majorize-minimize algorithm together with the linearized alternating direction method of multipliers is developed to solve the optimization problem. Since it does not involve the inverse of the covariance matrix, the algorithm can naturally handle large p small n scenarios. Through extensive simulation studies and a real data analysis, we show that our proposal is efficient and effective in the high-dimensional settings. The Matlab codes for this method are available online.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85186175535
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/729101
专题理学院_统计与数据科学系
作者单位
1.Department of Statistics and Data Science,Southern University of Science and Technology,Shenzhen,China
2.Booth School of Business,University of Chicago,Chicago,United States
3.College of Engineering,University of California,Davis,United States
4.Joint Laboratory of Data Science and Business Intelligence,Southwestern University of Finance and Economics,Chengdu,China
第一作者单位统计与数据科学系
第一作者的第一单位统计与数据科学系
推荐引用方式
GB/T 7714
Chen,Xin,Deng,Chang,He,Shuaida,等. High-dimensional sparse single–index regression via Hilbert–Schmidt independence criterion[J]. Statistics and Computing,2024,34(2).
APA
Chen,Xin,Deng,Chang,He,Shuaida,Wu,Runxiong,&Zhang,Jia.(2024).High-dimensional sparse single–index regression via Hilbert–Schmidt independence criterion.Statistics and Computing,34(2).
MLA
Chen,Xin,et al."High-dimensional sparse single–index regression via Hilbert–Schmidt independence criterion".Statistics and Computing 34.2(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Xin]的文章
[Deng,Chang]的文章
[He,Shuaida]的文章
百度学术
百度学术中相似的文章
[Chen,Xin]的文章
[Deng,Chang]的文章
[He,Shuaida]的文章
必应学术
必应学术中相似的文章
[Chen,Xin]的文章
[Deng,Chang]的文章
[He,Shuaida]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。