中文版 | English
题名

A knowledge-based data-driven (KBDD) framework for all-day identification of cloud types using satellite remote sensing

作者
通讯作者Chen,Yuntian
发表日期
2024-04-01
DOI
发表期刊
ISSN
0034-4257
卷号304
摘要
Cloud types, as a type of meteorological data, are of particular significance for evaluating changes in rainfall, heatwaves, water resources, floods and droughts, food security and vegetation cover, as well as land use. In order to effectively utilize high-resolution geostationary observations, a knowledge-based data-driven (KBDD) framework for all-day identification of cloud types based on spectral information from Himawari-8/9 satellite sensors is designed. And a novel, simple and efficient network, named CldNet, is proposed. The accuracy of the proposed model CldNet reaches 80.89 ± 2.18% in cloud type classification, which marks an improvement of 32%, 46%, 22%, 2%, and 39% compared to other widely used semantic segmentation networks such as SegNet, PSPNet, DeepLabV3+, UNet, and ResUnet, respectively. With the assistance of auxiliary information (e.g., satellite zenith/azimuth angle, solar zenith/azimuth angle), the accuracy of CldNet-W using visible and near-infrared bands and CldNet-O not using visible and near-infrared bands on the test dataset is 82.23 ± 2.14% and 72.88 ± 1.42%, respectively. Meanwhile, the total parameters of CldNet are only 0.46M, making it easy for edge deployment. More importantly, the trained CldNet without any fine-tuning can predict cloud types with higher spatial resolution using satellite spectral data with spatial resolution 0.02°×0.02°, which indicates that CldNet possesses a strong generalization ability. In aggregate, the KBDD framework using CldNet is a highly effective cloud-type identification system capable of providing a high-fidelity, all-day, spatiotemporal cloud-type database for many climate assessment fields.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85185196806
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/729113
专题工学院_环境科学与工程学院
作者单位
1.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Peng Cheng Laboratory,Shenzhen,518000,China
3.Ningbo Institute of Digital Twin,Eastern Institute of Technology,Ningbo,315200,China
4.College of Engineering,Peking University,Beijing,100000,China
第一作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Nie,Longfeng,Chen,Yuntian,Du,Mengge,et al. A knowledge-based data-driven (KBDD) framework for all-day identification of cloud types using satellite remote sensing[J]. Remote Sensing of Environment,2024,304.
APA
Nie,Longfeng,Chen,Yuntian,Du,Mengge,Sun,Changqi,&Zhang,Dongxiao.(2024).A knowledge-based data-driven (KBDD) framework for all-day identification of cloud types using satellite remote sensing.Remote Sensing of Environment,304.
MLA
Nie,Longfeng,et al."A knowledge-based data-driven (KBDD) framework for all-day identification of cloud types using satellite remote sensing".Remote Sensing of Environment 304(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Nie,Longfeng]的文章
[Chen,Yuntian]的文章
[Du,Mengge]的文章
百度学术
百度学术中相似的文章
[Nie,Longfeng]的文章
[Chen,Yuntian]的文章
[Du,Mengge]的文章
必应学术
必应学术中相似的文章
[Nie,Longfeng]的文章
[Chen,Yuntian]的文章
[Du,Mengge]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。