题名 | A model-based direct inversion network (MDIN) for dual spectral computed tomography |
作者 | |
发表日期 | 2024-03-07
|
DOI | |
发表期刊 | |
ISSN | 0031-9155
|
EISSN | 1361-6560
|
卷号 | 69期号:5 |
摘要 | Objective. Dual spectral computed tomography (DSCT) is a very challenging problem in the field of imaging. Due to the nonlinearity of its mathematical model, the images reconstructed by the conventional CT usually suffer from the beam hardening artifacts. Additionally, several existing DSCT methods rely heavily on the information of the spectra, which is often not readily available in applications. To address this problem, in this study, we aim to develop a novel approach to improve the DSCT reconstruction performance. Approach. A model-based direct inversion network (MDIN) is proposed for DSCT, which can directly predict the basis material images from the collected polychromatic projections. The all operations are performed in the network, requiring neither the conventional algorithms nor the information of the spectra. It can be viewed as an approximation to the inverse procedure of DSCT imaging model. The MDIN is composed of projection pre-decomposition module (PD-module), domain transformation layer (DT-layer), and image post-decomposition module (ID-module). The PD-module first performs the pre-decomposition on the polychromatic projections that consists of a series of stacked one-dimensional convolution layers. The DT-layer is designed to obtain the preliminary decomposed results, which has the characteristics of sparsely connected and learnable parameters. And the ID-module uses a deep neural network to further decompose the reconstructed results of the DT-layer so as to achieve higher-quality basis material images. Main results. Numerical experiments demonstrate that the proposed MDIN has significant advantages in substance decomposition, artifact reduction and noise suppression compared to other methods in the DSCT reconstruction. Significance. The proposed method has a flexible applicability, which can be extended to other CT problems, such as multi-spectral CT and low dose CT. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
ESI学科分类 | MOLECULAR BIOLOGY & GENETICS
|
Scopus记录号 | 2-s2.0-85185394854
|
来源库 | Scopus
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/729130 |
专题 | 南方科技大学 |
作者单位 | 1.School of Mathematical Sciences,Capital Normal University,Beijing,100048,China 2.School of Medical Technology and Engineering,Henan University of Science and Technology,Luoyang,471000,China 3.Shenzhen National Applied Mathematics Center,Southern University of Science and Technology,Shenzhen,518055,China |
推荐引用方式 GB/T 7714 |
Zhou,Haichuan,Zhang,Huitao,Zhao,Xing,et al. A model-based direct inversion network (MDIN) for dual spectral computed tomography[J]. Physics in Medicine and Biology,2024,69(5).
|
APA |
Zhou,Haichuan,Zhang,Huitao,Zhao,Xing,Zhang,Peng,&Zhu,Yining.(2024).A model-based direct inversion network (MDIN) for dual spectral computed tomography.Physics in Medicine and Biology,69(5).
|
MLA |
Zhou,Haichuan,et al."A model-based direct inversion network (MDIN) for dual spectral computed tomography".Physics in Medicine and Biology 69.5(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论