中文版 | English
题名

Integrated behavioural analysis of FRP-confined circular columns using FEM and machine learning

作者
通讯作者Bahrami,Alireza
发表日期
2024-03-01
DOI
发表期刊
EISSN
2666-6820
卷号13
摘要
This study investigates the structural behaviour of double-skin columns, introducing novel double-skin double filled tubular (DSDFT) columns, which utilise double steel tubes and concrete to enhance the load-carrying capacity and ductility beyond conventional double-skin hollow tubular (DSHT) columns, employing a combination of finite element model (FEM) and machine learning (ML) techniques. A total of 48 columns (DSHT+DSDFT) were created to examine the impact of various parameters, such as double steel tube configurations, thickness of fibre-reinforced polymer (FRP) layer, type of FRP material, and steel tube diameter, on the load-carrying capacity and ductility of the columns. The results were validated against the experimental findings to ensure their accuracy. Key findings highlight the advantages of the DSDFT configuration. Compared to the DSHT columns, the DSDFT columns exhibited remarkable 19.54 % to 101.21 % increases in the load-carrying capacity, demonstrating improved ductility and load-bearing capabilities. Thicker FRP layers enhanced the load-carrying capacity up to 15 %, however at the expense of the reduced axial strain. It was also observed that glass FRP wrapping displayed 25 % superior ultimate axial strain than aramid FRP wrapping. Four different ML models were assessed to predict the axial load-carrying capacity of the columns, with long short-term memory (LSTM) and bidirectional LSTM models emerging as superior choices indicating exceptional predictive capabilities. This interdisciplinary approach offers valuable insights into designing and optimising confined column systems. It sheds light on both double-tube and single-tube configurations, propelling advancements in structural engineering practices for new constructions and retrofitting. Further, it lays out a blueprint for maximising the performance of the confined columns under the axial compression.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一
Scopus记录号
2-s2.0-85186080868
来源库
Scopus
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/729160
专题工学院_海洋科学与工程系
作者单位
1.Department of Ocean Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.School of Applied Technologies,Qujing Normal University,Qujing,Yunnan,655011,China
3.Department of Building Engineering,Energy Systems and Sustainability Science,Faculty of Engineering and Sustainable Development,University of Gävle,Gävle,801 76,Sweden
4.Department of Civil Engineering,Indian Institute of Technology-BHU,Varanasi,Uttar Pradesh,India
5.Department of Civil Engineering,National Institute of Technology Patna,India
6.Mechanical and Industrial Engineering Department,Qatar University,Doha,Qatar
7.Faculty of Engineering,University of Balamand,Tripoli P.O. Box 100,Lebanon
第一作者单位海洋科学与工程系
第一作者的第一单位海洋科学与工程系
推荐引用方式
GB/T 7714
Ali,Liaqat,Isleem,Haytham F.,Bahrami,Alireza,et al. Integrated behavioural analysis of FRP-confined circular columns using FEM and machine learning[J]. Composites Part C: Open Access,2024,13.
APA
Ali,Liaqat.,Isleem,Haytham F..,Bahrami,Alireza.,Jha,Ishan.,Zou,Guang.,...&Jahami,Ali.(2024).Integrated behavioural analysis of FRP-confined circular columns using FEM and machine learning.Composites Part C: Open Access,13.
MLA
Ali,Liaqat,et al."Integrated behavioural analysis of FRP-confined circular columns using FEM and machine learning".Composites Part C: Open Access 13(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ali,Liaqat]的文章
[Isleem,Haytham F.]的文章
[Bahrami,Alireza]的文章
百度学术
百度学术中相似的文章
[Ali,Liaqat]的文章
[Isleem,Haytham F.]的文章
[Bahrami,Alireza]的文章
必应学术
必应学术中相似的文章
[Ali,Liaqat]的文章
[Isleem,Haytham F.]的文章
[Bahrami,Alireza]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。