题名 | Long-term gridded land evapotranspiration reconstruction using Deep Forest with high generalizability |
作者 | |
通讯作者 | Dashan Wang; Zhenzhong Zeng |
发表日期 | 2023-12
|
DOI | |
发表期刊 | |
卷号 | 10页码:908 |
摘要 | Previous datasets have limitations in generalizing evapotranspiration (ET) across various land cover types due to the scarcity and spatial heterogeneity of observations, along with the incomplete understanding of underlying physical mechanisms as a deeper contributing factor. To fill in these gaps, here we developed a global Highly Generalized Land (HG-Land) ET dataset at 0.5° spatial resolution with monthly values covering the satellite era (1982–2018). Our approach leverages the power of a Deep Forest machine-learning algorithm, which ensures good generalizability and mitigates overfitting by minimizing hyper-parameterization. Model explanations are further provided to enhance model transparency and gain new insights into the ET process. Validation conducted at both the site and basin scales attests to the dataset's satisfactory accuracy, with a pronounced emphasis on the Northern Hemisphere. Furthermore, we find that the primary driver of ET predictions varies across different climatic regions. Overall, the HG-Land ET, underpinned by the interpretability of the machine-learning model, emerges as a validated and generalized resource catering to scientific research and various applications. |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/729186 |
专题 | 工学院_环境科学与工程学院 工学院_计算机科学与工程系 |
作者单位 | 1.School of environmental Science and engineering, Southern University of Science and technology, Shenzhen, 518055, China 2.Department of computer Science and engineering, Southern University of Science and technology, Shenzhen, 518055, China 3.Research institute of trustworthy Autonomous Systems, Southern University of Science andTechnology, Shenzhen, 518055, China 4.Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China |
第一作者单位 | 环境科学与工程学院 |
通讯作者单位 | 环境科学与工程学院; 南方科技大学 |
第一作者的第一单位 | 环境科学与工程学院 |
推荐引用方式 GB/T 7714 |
QiaomeiFeng,Junyong Shen,FengYang,et al. Long-term gridded land evapotranspiration reconstruction using Deep Forest with high generalizability[J]. Scientific Data,2023,10:908.
|
APA |
QiaomeiFeng.,Junyong Shen.,FengYang.,Shijing Liang.,Jiang Liu.,...&Zhenzhong Zeng.(2023).Long-term gridded land evapotranspiration reconstruction using Deep Forest with high generalizability.Scientific Data,10,908.
|
MLA |
QiaomeiFeng,et al."Long-term gridded land evapotranspiration reconstruction using Deep Forest with high generalizability".Scientific Data 10(2023):908.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2023_SD_Feng_Long-te(8233KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论