中文版 | English
题名

A general and modular DARPin-apoferritin scaffold enables the visualization of small proteins by cryo-EM

姓名
姓名拼音
YAN Ming
学号
11950031
学位类型
博士
学位专业
biology
导师
曾福星
导师单位
系统生物学系
论文答辩日期
2023-12-15
论文提交日期
2024-03-27
学位授予单位
香港大学
学位授予地点
香港
摘要

Structural biology understands and elucidates biological mechanisms by analyzing the structure of biological macromolecules. It can explore and understand the pathogenesis of diseases, as well as develop more effective treatment methods. In addition, structural biology facilities design biological antibiotics and other important biological compounds.There are three analytical methods for structural biology. Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscope (cryo-EM). NMR can be used to observe the dynamic process of proteins, but it is limited to stable proteins with small molecular weights. Although X-ray has analyzed a lot of very important structures, this method is also powerless for proteins that are unable to diffract. With the development of cryo-EM at present, this method has analyzed many very important membrane proteins and protein complexes, but it is difficult to achieve satisfactory resolution for proteins with small molecular weights.Many strategies have attempted to use cryo-EM to resolve small proteins, mainly divided into three categories: 1. improving cryo-EM machine components, 2. optimizing protein sample preparation and data analysis, 3. linking small proteins to large proteins to resolve the entire protein complex. The first two strategies are very demanding in the experiment and unsuitable for most proteins. The current, more effective solution is the third strategy: rigidly connect the small protein with a large scaffold protein and determine the three-dimensional (3D) structure of the small protein by solving the structure of the entire large protein complex. However, the resolution of the target protein currently solved is not satisfactory.  In this study, based on the above method, suitable bases and adaptor proteins to form scaffold proteins were screened and the connection between the adaptor and base was optimized to enhance the rigidity of the connection. In addition, by screening suitable base proteins, the symmetry of the base is used to reduce the amount of electron microscopy images collected and the orientation preference of protein particles on the copper mesh to obtain a high-resolution cryo-EM structure of small proteins. Finally, a relatively high-resolution backbone protein (2.5 Å) and a high-resolution small target protein (GFP.2.8-3.8 Å) was obtained and the MBP high-resolution structure was determined by applying this method. In conclusion, the method of obtaining small proteins by cryo-EM and obtained relatively high 3D structures of small proteins was improved. In future, this method will apply to more proteins with unknown structures.

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2024-07
参考文献列表

1. Maveyraud, L. and L. Mourey, Protein X-ray Crystallography and Drug Discovery.Molecules, 2020. 25(5).
2. Tsegaye, S., G. Dedefo, and M. Mehdi, Biophysical applications in structural and molecular biology. Biol Chem, 2021. 402(10): p. 1155-1177.
3. Boesch, C., Molecular aspects of magnetic resonance imaging and spectroscopy. Mol Aspects Med, 1999. 20(4-5): p. 185-318.
4. Nerli, S., A.C. McShan, and N.G. Sgourakis, Chemical shift-based methods in NMR structure determination. Prog Nucl Magn Reson Spectrosc, 2018. 106-107: p. 1-25.
5. Toukach, F.V. and V.P. Ananikov, Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations. Chem Soc Rev, 2013. 42(21): p. 8376-415.
6. Wishart, D., NMR spectroscopy and protein structure determination: applications to drug discovery and development. Curr Pharm Biotechnol, 2005. 6(2): p. 105-20.
7. Bruker Avance III™ HD 850 MHz.
8. Hu, Y., et al., NMR-Based Methods for Protein Analysis. Anal Chem, 2021. 93(4): p. 1866-1879.
9. Kanelis, V., J.D. Forman-Kay, and L.E. Kay, Multidimensional NMR methods for protein structure determination. IUBMB Life, 2001. 52(6): p. 291-302.
10. Whitehead, B., C.J. Craven, and J.P. Waltho, Double and triple resonance NMR methods for protein assignment. Methods Mol Biol, 1997. 60: p. 29-52.
11. Schwieters, C.D., et al., The Xplor-NIH NMR molecular structure determination package. J Magn Reson, 2003. 160(1): p. 65-73.12. Berjanskii, M., et al., GeNMR: a web server for rapid NMR-based protein structure determination. Nucleic Acids Res, 2009. 37(Web Server issue): p. W670-7.13. Meyer, F., et al., AMBER: Assessment of Metagenome BinnERs. Gigascience, 2018. 7(6).14. Xu, Y.Q., et al., A new strategy for structure determination of large proteins in solution without deuteration. Nature Methods, 2006. 3(11): p. 931-937.15. Sekhar, A. and L.E. Kay, An NMR View of Protein Dynamics in Health and Disease. Annu Rev Biophys, 2019. 48: p. 297-319.16. McCoy, A.J., et al., Phaser crystallographic software. J Appl Crystallogr, 2007. 40(Pt 4): p. 658-674.17. Murshudov, G.N., et al., REFMAC5 for the refinement of macromolecular crystal structures.Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 4): p. 355-67.18. Collaborative Computational Project, N., The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr, 1994. 50(Pt 5): p. 760-3.19. Afonine, P.V., et al., Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr, 2012. 68(Pt 4): p. 352-67.20. Emsley, P., et al., Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 4): p. 486-501.21. Lorber, B., et al., Crystal growth of proteins, nucleic acids, and viruses in gels. Prog Biophys Mol Biol, 2009. 101(1-3): p. 13-25.22. Hauptman, H., Phasing methods for protein crystallography. Curr Opin Struct Biol, 1997. 7(5): p. 672-80.23. Taylor, G., The phase problem. Acta Crystallogr D Biol Crystallogr, 2003. 59(Pt 11): p. 1881-90.24. Uson, I. and G.M. Sheldrick, Advances in direct methods for protein crystallography. Curr Opin Struct Biol, 1999. 9(5): p. 643-8.25. Li, J. and J. Sun, Application of X-ray Diffraction and Electron Crystallography for Solving Complex Structure Problems. Acc Chem Res, 2017. 50(11): p. 2737-2745.26. Ruska, E., The early development of electron lenses and electron microscopy. Microsc Acta Suppl, 1980(Suppl 5): p. 1-140.27. Mulvey, T., The 1986 Nobel-Prize in Physics - Its Implications for Electron-Microscopy.Journal of Microscopy-Oxford, 1987. 147: p. 1-3.28. Wyckoff, R.W.G., The Beginnings of Electron-Microscopy - Reminiscences. Advances in Imaging and Electron Physics, 1985: p. 583-587.29. Carpenter, R.W., High-Resolution Analytical Electron-Microscopy. Abstracts of Papers of the American Chemical Society, 1981. 182(Aug): p. 102-Inor.30. Li, S., et al., High-vacuum optical platform for cryo-CLEM (HOPE): A new solution for non￾integrated multiscale correlative light and electron microscopy. J Struct Biol, 2018. 201(1): p. 63-75.31. Nishida, J., Field-Emission Electron-Gun Development. Electronics & Communications in Japan, 1971. 54(6): p. 65-&.32. Rozenfeld, P., Electromagnetic Theory of 3-Dimensional Inhomogeneous Lenses. Ieee Transactions on Antennas and Propagation, 1976. 24(3): p. 365-370.33. Frank, J., Three-dimensional electron microscopy of macromolecular assemblies. 1996, San Diego: Academic Press. xvii, 342 p.34. Authier, A. and C. Malgrange, Diffraction physics. Acta Crystallographica a-Foundation and Advances, 1998. 54: p. 806-819.35. Sigworth, F.J., Principles of cryo-EM single-particle image processing. Microscopy, 2016. 65(1): p. 57-67.36. Krios G3i Cryo-TEM. Available from: https://assets.thermofisher.com/TFS￾Assets/MSD/Datasheets/Krios-G3i-Datasheet-JP.pdf.37. De Rosier, D.J. and A. Klug, Reconstruction of three dimensional structures from electron micrographs. Nature, 1968. 217(5124): p. 130-4.38. Taylor, K.A. and R.M. Glaeser, Electron diffraction of frozen, hydrated protein crystals.Science, 1974. 186(4168): p. 1036-7.39. Unwin, P.N. and R. Henderson, Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol, 1975. 94(3): p. 425-40.40. Dubochet, J., et al., Electron-Microscopy of Frozen Water and Aqueous-Solutions. Journal of Microscopy, 1982. 128(Dec): p. 219-237.41. Liao, M.F., et al., Structure of the TRPV1 ion channel determined by electron cryo￾microscopy. Nature, 2013. 504(7478): p. 107-+.42. Wu, S.P., J.P. Armache, and Y.F. Cheng, Single-particle cryo-EM data acquisition by using direct electron detection camera. Microscopy, 2016. 65(1): p. 35-41.43. Hu, J., et al., Automatical Detecting and Connecting the Mitochondria From the Serial EM Images. 2017 Ieee International Conference on Mechatronics and Automation (Icma), 2017: p. 1632-1637.44. Prah, U., et al., Direct Electrocaloric Characterization of Ceramic Films. Small Methods, 2023: p. e2300212.45. Kermani, A.A., Applications of fluorescent protein tagging in structural studies of membrane proteins. FEBS J, 2023.46. Wolf, S.G. and M. Elbaum, CryoSTEM tomography in biology. Methods Cell Biol, 2019. 152: p. 197-215.47. Cheng, Y.F., Single-particle cryo-EM-How did it get here and where will it go. Science, 2018. 361(6405): p. 876-+.48. Brilot, A.F., et al., Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol, 2012. 177(3): p. 630-7.49. Bartesaghi, A., et al., 2.2 angstrom resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor. Science, 2015. 348(6239): p. 1147-1151.50. Bai, X.C., et al., An atomic structure of human gamma-secretase. Nature, 2015. 525(7568): p. 212-217.51. Zheng, S.Q., et al., MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods, 2017. 14(4): p. 331-332.52. Pak, M.A. and S.J. Cleveland, [Contrast transfer function of the visual system]. Biomed Tech (Berl), 1991. 36(9): p. 197-200.53. Barton, B., et al., In-focus electron microscopy of frozen-hydrated biological samples with a Boersch phase plate. Ultramicroscopy, 2011. 111(12): p. 1696-705.54. Jiang, L.H., et al., A novel approximation method of CTF amplitude correction for 3D single particle reconstruction. Ultramicroscopy, 2010. 110(4): p. 350-358.55. Rohou, A. and N. Grigorieff, CTFFIND4: Fast and accurate defocus estimation from electron micrographs. Journal of Structural Biology, 2015. 192(2): p. 216-221.56. Rath, B.K. and J. Frank, Fast automatic particle picking from cryo-electron micrographs using a locally normalized cross-correlation function: a case study. J Struct Biol, 2004. 145(1-2): p. 84-90.57. Tang, G., et al., EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol, 2007. 157(1): p. 38-46.58. Sigworth, F.J., A maximum-likelihood approach to single-particle image refinement.Journal of Structural Biology, 1998. 122(3): p. 328-339.59. Scheres, S.H., RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol, 2012. 180(3): p. 519-30.60. McSweeney, D.M., S.M. McSweeney, and Q. Liu, A self-supervised workflow for particle picking in cryo-EM. IUCrJ, 2020. 7(Pt 4): p. 719-727.61. Bakker, S.E., et al., Pushing the limits in single particle cryo-EM: general discussion.Faraday Discuss, 2022. 240(0): p. 312-322.62. Tang, W.S., et al., Ensemble Reweighting Using Cryo-EM Particle Images. J Phys Chem B, 2023.63. Baker, M.L., et al., Cryo-EM of macromolecular assemblies at near-atomic resolution. Nat Protoc, 2010. 5(10): p. 1697-708.64. Jomaa, A., et al., Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat Commun, 2016. 7: p. 10471.65. Zhang, X., et al., Structure of the human activated spliceosome in three conformational states. Cell Res, 2018. 28(3): p. 307-322.66. Du, J., et al., Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature, 2015. 526(7572): p. 224-9.67. Thompson, R.F., et al., An introduction to sample preparation and imaging by cryo￾electron microscopy for structural biology. Methods, 2016. 100: p. 3-15.68. Yeates, T.O., M.P. Agdanowski, and Y. Liu, Development of imaging scaffolds for cryo￾electron microscopy. Curr Opin Struct Biol, 2020. 60: p. 142-149.69. Henderson, R., The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys, 1995. 28(2): p. 171-93.70. Glaeser, R.M., et al., Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM. J Struct Biol, 2011. 174(1): p. 1-10.71. Drake, A.F., Circular dichroism. Methods Mol Biol, 1994. 22: p. 219-44.72. Kelly, S.M., T.J. Jess, and N.C. Price, How to study proteins by circular dichroism. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2005. 1751(2): p. 119-139.73. Greenfield, N.J., Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nature Protocols, 2006. 1(6): p. 2527-2535.74. Greenfield, N., Citation Classic - Computed Circular-Dichroism Spectra for the Evaluation of Protein Conformation. Current Contents/Life Sciences, 1982(26): p. 28-28.75. Funari, S.D., et al., Dynamic light scattering (DLS) in protein solutions. Biophysical Journal, 2000. 78(1): p. 292a-292a.76. Cabral, A., J.E. Cabral, and R. McNulty, Cryo-EM for Small Molecules. Curr Protoc, 2022. 2(12): p. e632.77. Danev, R., H. Yanagisawa, and M. Kikkawa, Cryo-EM performance testing of hardware and data acquisition strategies. Microscopy (Oxf), 2021. 70(6): p. 487-497.78. Fan, X., et al., Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution. Nat Commun, 2019. 10(1): p. 2386.79. Herzik, M.A., Jr., M. Wu, and G.C. Lander, High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM. Nat Commun, 2019. 10(1): p. 1032.80. Merk, A., et al., Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Cell, 2016. 165(7): p. 1698-1707.81. Wu, S., et al., Fabs enable single particle cryoEM studies of small proteins. Structure, 2012. 20(4): p. 582-92.82. Yao, Q., et al., Fusion of DARPin to Aldolase Enables Visualization of Small Protein by Cryo-EM. Structure, 2019. 27(7): p. 1148-+.83. Kratz, P.A., B. Bottcher, and M. Nassal, Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc Natl Acad Sci U S A, 1999. 96(5): p. 1915-20.84. Coscia, F., et al., Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein. Sci Rep, 2016. 6: p. 30909.85. Liu, Y., et al., Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system. Proc Natl Acad Sci U S A, 2018. 115(13): p. 3362-3367.86. Padilla, J.E., C. Colovos, and T.O. Yeates, Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc Natl Acad Sci U S A, 2001. 98(5): p. 2217-21.87. Wu, Y., et al., Rigidly connected multispecific artificial binders with adjustable geometries.Sci Rep, 2017. 7(1): p. 11217.88. Martin, T.G., et al., Design of a molecular support for cryo-EM structure determination.Proc Natl Acad Sci U S A, 2016. 113(47): p. E7456-E7463.89. Zhang, C., et al., Analysis of discrete local variability and structural covariance in macromolecular assemblies using Cryo-EM and focused classification. Ultramicroscopy, 2019. 203: p. 170-180.90. Pluckthun, A., Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol, 2015. 55: p. 489-511.91. Liu, Y., D.T. Huynh, and T.O. Yeates, A 3.8 A resolution cryo-EM structure of a small protein bound to an imaging scaffold. Nat Commun, 2019. 10(1): p. 1864.92. Harigae, H., K. Hino, and S. Toyokuni, Iron as Soul of Life on Earth Revisited: From Chemical Reaction, Ferroptosis to Therapeutics. Free Radic Biol Med, 2019. 133: p. 1-2.93. Lundin, D., et al., Use of structural phylogenetic networks for classification of the ferritinlike superfamily. J Biol Chem, 2012. 287(24): p. 20565-75.94. Sato, D., et al., Ferritin Assembly Revisited: A Time-Resolved Small-Angle X-ray Scattering Study. Biochemistry, 2016. 55(2): p. 287-93.95. Arosio, P., L. Elia, and M. Poli, Ferritin, cellular iron storage and regulation. IUBMB Life, 2017. 69(6): p. 414-422.96. Hamdi, F., et al., 2.7 A cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope. PLoS One, 2020. 15(5): p. e0232540.97. Forrer, P., et al., A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett, 2003. 539(1-3): p. 2-6.98. Kobe, B. and A.V. Kajava, When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends Biochem Sci, 2000. 25(10): p. 509-15.99. Li, J., A. Mahajan, and M.D. Tsai, Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry, 2006. 45(51): p. 15168-78.100. Gilbreth, R.N. and S. Koide, Structural insights for engineering binding proteins based on non-antibody scaffolds. Curr Opin Struct Biol, 2012. 22(4): p. 413-20.101. Bukowska, M.A. and M.G. Grutter, New concepts and aids to facilitate crystallization. Curr Opin Struct Biol, 2013. 23(3): p. 409-16.102. Kummer, L., et al., Structural and functional analysis of phosphorylation-specific binders of the kinase ERK from designed ankyrin repeat protein libraries. Proc Natl Acad Sci U S A, 2012. 109(34): p. E2248-57.103. Stojcheva, N., et al., Ensovibep, a SARS-CoV-2 antiviral designed ankyrin repeat protein, is safe and well tolerated in healthy volunteers: Results of a first-in-human, ascending single-dose Phase 1 study. Br J Clin Pharmacol, 2023.104. Kalichuk, V., et al., The archaeal "7 kDa DNA-binding" proteins: extended characterization of an old gifted family. Sci Rep, 2016. 6: p. 37274.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/729286
专题南方科技大学
生命科学学院_生物系
推荐引用方式
GB/T 7714
Yan M. A general and modular DARPin-apoferritin scaffold enables the visualization of small proteins by cryo-EM[D]. 香港. 香港大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11950031-燕鸣-生物系.pdf(5175KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[燕鸣]的文章
百度学术
百度学术中相似的文章
[燕鸣]的文章
必应学术
必应学术中相似的文章
[燕鸣]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。