1. Maveyraud, L. and L. Mourey, Protein X-ray Crystallography and Drug Discovery.Molecules, 2020. 25(5).
2. Tsegaye, S., G. Dedefo, and M. Mehdi, Biophysical applications in structural and molecular biology. Biol Chem, 2021. 402(10): p. 1155-1177.
3. Boesch, C., Molecular aspects of magnetic resonance imaging and spectroscopy. Mol Aspects Med, 1999. 20(4-5): p. 185-318.
4. Nerli, S., A.C. McShan, and N.G. Sgourakis, Chemical shift-based methods in NMR structure determination. Prog Nucl Magn Reson Spectrosc, 2018. 106-107: p. 1-25.
5. Toukach, F.V. and V.P. Ananikov, Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations. Chem Soc Rev, 2013. 42(21): p. 8376-415.
6. Wishart, D., NMR spectroscopy and protein structure determination: applications to drug discovery and development. Curr Pharm Biotechnol, 2005. 6(2): p. 105-20.
7. Bruker Avance III™ HD 850 MHz.
8. Hu, Y., et al., NMR-Based Methods for Protein Analysis. Anal Chem, 2021. 93(4): p. 1866-1879.
9. Kanelis, V., J.D. Forman-Kay, and L.E. Kay, Multidimensional NMR methods for protein structure determination. IUBMB Life, 2001. 52(6): p. 291-302.
10. Whitehead, B., C.J. Craven, and J.P. Waltho, Double and triple resonance NMR methods for protein assignment. Methods Mol Biol, 1997. 60: p. 29-52.
11. Schwieters, C.D., et al., The Xplor-NIH NMR molecular structure determination package. J Magn Reson, 2003. 160(1): p. 65-73.12. Berjanskii, M., et al., GeNMR: a web server for rapid NMR-based protein structure determination. Nucleic Acids Res, 2009. 37(Web Server issue): p. W670-7.13. Meyer, F., et al., AMBER: Assessment of Metagenome BinnERs. Gigascience, 2018. 7(6).14. Xu, Y.Q., et al., A new strategy for structure determination of large proteins in solution without deuteration. Nature Methods, 2006. 3(11): p. 931-937.15. Sekhar, A. and L.E. Kay, An NMR View of Protein Dynamics in Health and Disease. Annu Rev Biophys, 2019. 48: p. 297-319.16. McCoy, A.J., et al., Phaser crystallographic software. J Appl Crystallogr, 2007. 40(Pt 4): p. 658-674.17. Murshudov, G.N., et al., REFMAC5 for the refinement of macromolecular crystal structures.Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 4): p. 355-67.18. Collaborative Computational Project, N., The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr, 1994. 50(Pt 5): p. 760-3.19. Afonine, P.V., et al., Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr, 2012. 68(Pt 4): p. 352-67.20. Emsley, P., et al., Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 4): p. 486-501.21. Lorber, B., et al., Crystal growth of proteins, nucleic acids, and viruses in gels. Prog Biophys Mol Biol, 2009. 101(1-3): p. 13-25.22. Hauptman, H., Phasing methods for protein crystallography. Curr Opin Struct Biol, 1997. 7(5): p. 672-80.23. Taylor, G., The phase problem. Acta Crystallogr D Biol Crystallogr, 2003. 59(Pt 11): p. 1881-90.24. Uson, I. and G.M. Sheldrick, Advances in direct methods for protein crystallography. Curr Opin Struct Biol, 1999. 9(5): p. 643-8.25. Li, J. and J. Sun, Application of X-ray Diffraction and Electron Crystallography for Solving Complex Structure Problems. Acc Chem Res, 2017. 50(11): p. 2737-2745.26. Ruska, E., The early development of electron lenses and electron microscopy. Microsc Acta Suppl, 1980(Suppl 5): p. 1-140.27. Mulvey, T., The 1986 Nobel-Prize in Physics - Its Implications for Electron-Microscopy.Journal of Microscopy-Oxford, 1987. 147: p. 1-3.28. Wyckoff, R.W.G., The Beginnings of Electron-Microscopy - Reminiscences. Advances in Imaging and Electron Physics, 1985: p. 583-587.29. Carpenter, R.W., High-Resolution Analytical Electron-Microscopy. Abstracts of Papers of the American Chemical Society, 1981. 182(Aug): p. 102-Inor.30. Li, S., et al., High-vacuum optical platform for cryo-CLEM (HOPE): A new solution for nonintegrated multiscale correlative light and electron microscopy. J Struct Biol, 2018. 201(1): p. 63-75.31. Nishida, J., Field-Emission Electron-Gun Development. Electronics & Communications in Japan, 1971. 54(6): p. 65-&.32. Rozenfeld, P., Electromagnetic Theory of 3-Dimensional Inhomogeneous Lenses. Ieee Transactions on Antennas and Propagation, 1976. 24(3): p. 365-370.33. Frank, J., Three-dimensional electron microscopy of macromolecular assemblies. 1996, San Diego: Academic Press. xvii, 342 p.34. Authier, A. and C. Malgrange, Diffraction physics. Acta Crystallographica a-Foundation and Advances, 1998. 54: p. 806-819.35. Sigworth, F.J., Principles of cryo-EM single-particle image processing. Microscopy, 2016. 65(1): p. 57-67.36. Krios G3i Cryo-TEM. Available from: https://assets.thermofisher.com/TFSAssets/MSD/Datasheets/Krios-G3i-Datasheet-JP.pdf.37. De Rosier, D.J. and A. Klug, Reconstruction of three dimensional structures from electron micrographs. Nature, 1968. 217(5124): p. 130-4.38. Taylor, K.A. and R.M. Glaeser, Electron diffraction of frozen, hydrated protein crystals.Science, 1974. 186(4168): p. 1036-7.39. Unwin, P.N. and R. Henderson, Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol, 1975. 94(3): p. 425-40.40. Dubochet, J., et al., Electron-Microscopy of Frozen Water and Aqueous-Solutions. Journal of Microscopy, 1982. 128(Dec): p. 219-237.41. Liao, M.F., et al., Structure of the TRPV1 ion channel determined by electron cryomicroscopy. Nature, 2013. 504(7478): p. 107-+.42. Wu, S.P., J.P. Armache, and Y.F. Cheng, Single-particle cryo-EM data acquisition by using direct electron detection camera. Microscopy, 2016. 65(1): p. 35-41.43. Hu, J., et al., Automatical Detecting and Connecting the Mitochondria From the Serial EM Images. 2017 Ieee International Conference on Mechatronics and Automation (Icma), 2017: p. 1632-1637.44. Prah, U., et al., Direct Electrocaloric Characterization of Ceramic Films. Small Methods, 2023: p. e2300212.45. Kermani, A.A., Applications of fluorescent protein tagging in structural studies of membrane proteins. FEBS J, 2023.46. Wolf, S.G. and M. Elbaum, CryoSTEM tomography in biology. Methods Cell Biol, 2019. 152: p. 197-215.47. Cheng, Y.F., Single-particle cryo-EM-How did it get here and where will it go. Science, 2018. 361(6405): p. 876-+.48. Brilot, A.F., et al., Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol, 2012. 177(3): p. 630-7.49. Bartesaghi, A., et al., 2.2 angstrom resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor. Science, 2015. 348(6239): p. 1147-1151.50. Bai, X.C., et al., An atomic structure of human gamma-secretase. Nature, 2015. 525(7568): p. 212-217.51. Zheng, S.Q., et al., MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods, 2017. 14(4): p. 331-332.52. Pak, M.A. and S.J. Cleveland, [Contrast transfer function of the visual system]. Biomed Tech (Berl), 1991. 36(9): p. 197-200.53. Barton, B., et al., In-focus electron microscopy of frozen-hydrated biological samples with a Boersch phase plate. Ultramicroscopy, 2011. 111(12): p. 1696-705.54. Jiang, L.H., et al., A novel approximation method of CTF amplitude correction for 3D single particle reconstruction. Ultramicroscopy, 2010. 110(4): p. 350-358.55. Rohou, A. and N. Grigorieff, CTFFIND4: Fast and accurate defocus estimation from electron micrographs. Journal of Structural Biology, 2015. 192(2): p. 216-221.56. Rath, B.K. and J. Frank, Fast automatic particle picking from cryo-electron micrographs using a locally normalized cross-correlation function: a case study. J Struct Biol, 2004. 145(1-2): p. 84-90.57. Tang, G., et al., EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol, 2007. 157(1): p. 38-46.58. Sigworth, F.J., A maximum-likelihood approach to single-particle image refinement.Journal of Structural Biology, 1998. 122(3): p. 328-339.59. Scheres, S.H., RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol, 2012. 180(3): p. 519-30.60. McSweeney, D.M., S.M. McSweeney, and Q. Liu, A self-supervised workflow for particle picking in cryo-EM. IUCrJ, 2020. 7(Pt 4): p. 719-727.61. Bakker, S.E., et al., Pushing the limits in single particle cryo-EM: general discussion.Faraday Discuss, 2022. 240(0): p. 312-322.62. Tang, W.S., et al., Ensemble Reweighting Using Cryo-EM Particle Images. J Phys Chem B, 2023.63. Baker, M.L., et al., Cryo-EM of macromolecular assemblies at near-atomic resolution. Nat Protoc, 2010. 5(10): p. 1697-708.64. Jomaa, A., et al., Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat Commun, 2016. 7: p. 10471.65. Zhang, X., et al., Structure of the human activated spliceosome in three conformational states. Cell Res, 2018. 28(3): p. 307-322.66. Du, J., et al., Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature, 2015. 526(7572): p. 224-9.67. Thompson, R.F., et al., An introduction to sample preparation and imaging by cryoelectron microscopy for structural biology. Methods, 2016. 100: p. 3-15.68. Yeates, T.O., M.P. Agdanowski, and Y. Liu, Development of imaging scaffolds for cryoelectron microscopy. Curr Opin Struct Biol, 2020. 60: p. 142-149.69. Henderson, R., The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys, 1995. 28(2): p. 171-93.70. Glaeser, R.M., et al., Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM. J Struct Biol, 2011. 174(1): p. 1-10.71. Drake, A.F., Circular dichroism. Methods Mol Biol, 1994. 22: p. 219-44.72. Kelly, S.M., T.J. Jess, and N.C. Price, How to study proteins by circular dichroism. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2005. 1751(2): p. 119-139.73. Greenfield, N.J., Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nature Protocols, 2006. 1(6): p. 2527-2535.74. Greenfield, N., Citation Classic - Computed Circular-Dichroism Spectra for the Evaluation of Protein Conformation. Current Contents/Life Sciences, 1982(26): p. 28-28.75. Funari, S.D., et al., Dynamic light scattering (DLS) in protein solutions. Biophysical Journal, 2000. 78(1): p. 292a-292a.76. Cabral, A., J.E. Cabral, and R. McNulty, Cryo-EM for Small Molecules. Curr Protoc, 2022. 2(12): p. e632.77. Danev, R., H. Yanagisawa, and M. Kikkawa, Cryo-EM performance testing of hardware and data acquisition strategies. Microscopy (Oxf), 2021. 70(6): p. 487-497.78. Fan, X., et al., Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution. Nat Commun, 2019. 10(1): p. 2386.79. Herzik, M.A., Jr., M. Wu, and G.C. Lander, High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM. Nat Commun, 2019. 10(1): p. 1032.80. Merk, A., et al., Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Cell, 2016. 165(7): p. 1698-1707.81. Wu, S., et al., Fabs enable single particle cryoEM studies of small proteins. Structure, 2012. 20(4): p. 582-92.82. Yao, Q., et al., Fusion of DARPin to Aldolase Enables Visualization of Small Protein by Cryo-EM. Structure, 2019. 27(7): p. 1148-+.83. Kratz, P.A., B. Bottcher, and M. Nassal, Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc Natl Acad Sci U S A, 1999. 96(5): p. 1915-20.84. Coscia, F., et al., Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein. Sci Rep, 2016. 6: p. 30909.85. Liu, Y., et al., Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system. Proc Natl Acad Sci U S A, 2018. 115(13): p. 3362-3367.86. Padilla, J.E., C. Colovos, and T.O. Yeates, Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc Natl Acad Sci U S A, 2001. 98(5): p. 2217-21.87. Wu, Y., et al., Rigidly connected multispecific artificial binders with adjustable geometries.Sci Rep, 2017. 7(1): p. 11217.88. Martin, T.G., et al., Design of a molecular support for cryo-EM structure determination.Proc Natl Acad Sci U S A, 2016. 113(47): p. E7456-E7463.89. Zhang, C., et al., Analysis of discrete local variability and structural covariance in macromolecular assemblies using Cryo-EM and focused classification. Ultramicroscopy, 2019. 203: p. 170-180.90. Pluckthun, A., Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol, 2015. 55: p. 489-511.91. Liu, Y., D.T. Huynh, and T.O. Yeates, A 3.8 A resolution cryo-EM structure of a small protein bound to an imaging scaffold. Nat Commun, 2019. 10(1): p. 1864.92. Harigae, H., K. Hino, and S. Toyokuni, Iron as Soul of Life on Earth Revisited: From Chemical Reaction, Ferroptosis to Therapeutics. Free Radic Biol Med, 2019. 133: p. 1-2.93. Lundin, D., et al., Use of structural phylogenetic networks for classification of the ferritinlike superfamily. J Biol Chem, 2012. 287(24): p. 20565-75.94. Sato, D., et al., Ferritin Assembly Revisited: A Time-Resolved Small-Angle X-ray Scattering Study. Biochemistry, 2016. 55(2): p. 287-93.95. Arosio, P., L. Elia, and M. Poli, Ferritin, cellular iron storage and regulation. IUBMB Life, 2017. 69(6): p. 414-422.96. Hamdi, F., et al., 2.7 A cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope. PLoS One, 2020. 15(5): p. e0232540.97. Forrer, P., et al., A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett, 2003. 539(1-3): p. 2-6.98. Kobe, B. and A.V. Kajava, When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends Biochem Sci, 2000. 25(10): p. 509-15.99. Li, J., A. Mahajan, and M.D. Tsai, Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry, 2006. 45(51): p. 15168-78.100. Gilbreth, R.N. and S. Koide, Structural insights for engineering binding proteins based on non-antibody scaffolds. Curr Opin Struct Biol, 2012. 22(4): p. 413-20.101. Bukowska, M.A. and M.G. Grutter, New concepts and aids to facilitate crystallization. Curr Opin Struct Biol, 2013. 23(3): p. 409-16.102. Kummer, L., et al., Structural and functional analysis of phosphorylation-specific binders of the kinase ERK from designed ankyrin repeat protein libraries. Proc Natl Acad Sci U S A, 2012. 109(34): p. E2248-57.103. Stojcheva, N., et al., Ensovibep, a SARS-CoV-2 antiviral designed ankyrin repeat protein, is safe and well tolerated in healthy volunteers: Results of a first-in-human, ascending single-dose Phase 1 study. Br J Clin Pharmacol, 2023.104. Kalichuk, V., et al., The archaeal "7 kDa DNA-binding" proteins: extended characterization of an old gifted family. Sci Rep, 2016. 6: p. 37274.
修改评论