题名 | Multiple-instance Learning from Triplet Comparison Bags |
作者 | |
通讯作者 | Feng,Lei |
发表日期 | 2024-02-12
|
DOI | |
发表期刊 | |
ISSN | 1556-4681
|
EISSN | 1556-472X
|
卷号 | 18期号:4 |
摘要 | Multiple-instance learning (MIL) solves the problem where training instances are grouped in bags, and a binary (positive or negative) label is provided for each bag. Most of the existing MIL studies need fully labeled bags for training an effective classifier, while it could be quite hard to collect such data in many real-world scenarios, due to the high cost of data labeling process. Fortunately, unlike fully labeled data, triplet comparison data can be collected in a more accurate and human-friendly way. Therefore, in this article, we for the first time investigate MIL from only triplet comparison bags, where a triplet (X, X, X ) contains the weak supervision information that bag X is more similar to X than to X. To solve this problem, we propose to train a bag-level classifier by the empirical risk minimization framework and theoretically provide a generalization error bound. We also show that a convex formulation can be obtained only when specific convex binary losses such as the square loss and the double hinge loss are used. Extensive experiments validate that our proposed method significantly outperforms other baselines. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Science Foundation of China[62176055]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Information Systems
; Computer Science, Software Engineering
|
WOS记录号 | WOS:001190988100018
|
出版者 | |
Scopus记录号 | 2-s2.0-85185815285
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/729787 |
专题 | 南方科技大学 |
作者单位 | 1.Chongqing University,Chongqing,China 2.Southeast University,Nanjing,China 3.The University of Sydney,Sydney,Australia 4.Southern University of Science and Technology,Shenzhen,China 5.Nanjing University of Finance and Economics,Nanjing,China 6.Nanyang Technological University,Singapore 7. |
推荐引用方式 GB/T 7714 |
Shu,Senlin,Wang,Deng Bao,Yuan,Suqin,et al. Multiple-instance Learning from Triplet Comparison Bags[J]. ACM Transactions on Knowledge Discovery from Data,2024,18(4).
|
APA |
Shu,Senlin.,Wang,Deng Bao.,Yuan,Suqin.,Wei,Hongxin.,Jiang,Jiuchuan.,...&Zhang,Min Ling.(2024).Multiple-instance Learning from Triplet Comparison Bags.ACM Transactions on Knowledge Discovery from Data,18(4).
|
MLA |
Shu,Senlin,et al."Multiple-instance Learning from Triplet Comparison Bags".ACM Transactions on Knowledge Discovery from Data 18.4(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论