1. Shen, H.C. Asymmetric synthesis of chiral chromans. Tetrahedron. 2009, 65, 3931-3952.
2. J., M.L. α-Tocopherol. 1980, New York: Marcel Dekker.
3. Evans, J.M. The discovery of cromakalim. Chemical Britain. 1991, 27, 439-442.
4. Yu, D., M. Suzuki, L. Xie, et al. Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Medicinal Research Reviews. 2003, 23, 322-45.
5. Sankaran, M. and M. Prasad. Mode of action of a new non-steroidal post-coital antifertility agent (Centchroman: 67/20 CDRI) in rats. Contraception. 1974, 9, 279-289.
6. Morito, K., T. Hirose, J. Kinjo, et al. Interaction of phytoestrogens with estrogen receptors α and β. Biological and Pharmaceutical Bulletin. 2001, 24, 351-356.
7. Weyant, M.J., A.M. Carothers, A.J. Dannenberg, et al. (+)-Catechin inhibits intestinal tumor formation and suppresses focal adhesion kinase activation in the min/+ mouse. Cancer Research. 2001, 61, 118-125.
8. Schweizer, E.E.M.-N., O. 2H- and 4H-1-Benzopyrans. In Chromenes, Chromanes, Chromones,ed. G.P. Ellis, Ed. Vol. 31. 1977, New York: Wiley-Interscience. 11-139.
9. Flavin, M.T., J.D. Rizzo, A. Khilevich, et al. Synthesis, chromatographic resolution, andanti-human immunodeficiency virus activity of (±)-calanolide A and its enantiomers. Journal of Medicinal Chemistry. 1996, 39, 1303-1313.
10. Bae, U.-J., Y.L. Da, M.-Y. Song, et al. A prenylated flavan from Broussonetia kazinoki prevents cytokine-induced β-cell death through suppression of nuclear factor-κB activity. Biological and Pharmaceutical Bulletin. 2011, 34, 1026-1031.
11. Kim, A.Y., C.G. Lee, H. Li, et al. Enhanced antioxidant effect of prenylated polyphenols as Fyn inhibitor. Free Radical Biology and Medicine. 2012, 53, 1198-1208.
12. Roll, D.M., J.K. Manning, and G.T. Carter. Hongoquercins A and B, new sesquiterpenoid antibiotics: Isolation, structure elucidation, and antibacterial activity. The Journal ofAntibiotics. 1998, 51, 635-639.
13. Perkin, A.G. and E. Yoshitake. CXV.-Constituents of acacia and gambier catechus. Part I. Journal of the Chemical Society, Transactions. 1902, 81, 1160-1173.
14. Ryoyasu, S. and M. Katoh. A history of catechin chemistry with special reference to tea leaves. Chagyo Kenkyu Hokoku (Tea Research Journal). 2011, 2009, 1-18.
15. Spraggon, G., C. Phillips, U.K. Nowak, et al. The crystal structure of the catalytic domain of human urokinase-type plasminogen activator. Structure. 1995, 3, 681-691.
16. Jankun, J., S.H. Selman, R. Swiercz, et al. Why drinking green tea could prevent cancer. Nature. 1997, 387, 561-561.
17. Armstrong, W.P. Logwood: the tree that spawned a nation. Pacific Horticulture. 1992.
18. Lin, L.-G., H. Xie, H.-L. Li, et al. Naturally occurring homoisoflavonoids function as potent protein tyrosine kinase inhibitors by c-Src-based high-throughput screening. Journal of Medicinal Chemistry. 2008, 51, 4419-4429.
19. Kashman, Y., K.R. Gustafson, R. Fuller, et al. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. Journal of Medicinal Chemistry. 1992, 35, 2735-2743.
20. Pan, W.-B., F.-R. Chang, L.-M. Wei, et al. New flavans, spirostanol sapogenins, and a pregnane genin from Tupistra chinensis and their cytotoxicity. Journal of Natural Products. 2003, 66, 161-168.
21. Jiang, S. Dictionary Of Traditional Chenese Crude Drugs. Shanghai Scientific Technologic, Shanghai. 1979, 907.
22. Sawadjoon, S., P. Kittakoop, K. Kirtikara, et al. Atropisomeric Myristinins: Selective COX-2 inhibitors and antifungal agents from Myristica cinnamomea. The Journal of Organic Chemistry. 2002, 67, 5470-5475.
23. Maloney, D.J., J.-Z. Deng, S.R. Starck, et al. (+)-Myristinin A, a naturally occurring DNA polymerase β inhibitor and potent DNA-damaging agent. Journal of the American Chemical Society. 2005, 127, 4140-4141.
24. Lee, H.J., Y. Lee, K.H. Ryu, et al. New estrogenic compounds isolated from Broussonetia kazinoki. Bioorganic & Medicinal Chemistry Letters. 2010, 20, 3764-3767.
25. Galli, F., A. Azzi, M. Birringer, et al. Vitamin E: Emerging aspects and new directions. Free Radical Biology and Medicine. 2017, 102, 16-36.
26. Birringer, M., K. Siems, A. Maxones, et al. Natural 6-hydroxy-chromanols and-chromenols: Structural diversity, biosynthetic pathways and health implications. RSC advances. 2018, 8, 4803-4841.
27. Organization, W.H. Vitamin and mineral requirements in human nutrition. 2nd ed. 1998, Switzerland: World Health Organization.
28. Shahidi, F. and A.C. De Camargo. Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits. International Journal of Molecular Sciences. 2016, 17, 1745.
29. Waniek, S., R. Di Giuseppe, S. Plachta-Danielzik, et al. Association of vitamin E levels with metabolic syndrome, and MRI-derived body fat volumes and liver fat content. Nutrients. 2017, 9, 1143.
30. Halliwell, B. and J.M. Gutteridge. Free radicals in biology and medicine, Clarendon. 2nd ed. 1989, London: Oxford.31. Roberfroid, M.B. and P. Buc Calderon. Free radicals and oxidation phenomena in biological systems. 1995, New York: University of Catholique de Louvain Brussels.32. Braughler, J.M., L.A. Duncan, and R.L. Chase. The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. Journal of Biological Chemistry. 1986, 261, 10282-10289.33. Lee, H., K. Lee, J.-K. Jung, et al. Synthesis and evaluation of6-hydroxy-7-methoxy-4-chromanone-and chroman-2-carboxamides as antioxidants.Bioorganic & Medicinal Chemistry Letters. 2005, 15, 2745-2748.34. Seeram, N.P., H. Jacobs, S. McLean, et al. A prenylated benzopyran derivative from Peperomia clusiifolia. Phytochemistry. 1998, 49, 1389-1391.35. College, K.N.M. Dictionary of Chinese Herbal Drugs. 1978, Shanghai: Shanghai Science and Technology Press.36. Isabashi, K. Antibiot., studies on antibiotics from Helminthosporium. in Ser. A. 1962.37. Bellotti, M. and L. Riviera. Siccanin: a new antifungal antibiotic with antidermatophytic properties. In vitro studies. Chemioterapia: International Journal of the Mediterranean Society of Chemotherapy. 1985, 4, 431-433.38. Venkateswarlu, Y., D.J. Faulkner, J.L.R. Steiner, et al. Smenochromenes, unusual macrocyclic sesquiterpene hydroquinone derivatives from a Seychelles sponge of the genusSmenospongia. The Journal of Organic Chemistry. 1991, 56, 6271-6274.39. Fenical, W. and O. McConnell. Chromazonarol and isochromazonarol, new chromanols from the brown seaweed Dictyopteris undulata (zonarioides). Experientia. 1975, 31, 1004-1005.40. Yoshioka, T., T. Fujita, T. Kanai, et al. Studies on hindered phenols and analogs. 1.Hypolipidemic and hypoglycemic agents with ability to inhibit lipid peroxidation. Journal of Medicinal Chemistry. 1989, 32, 421-428.41. Cossy, J., C. Menciu, H. Rakotoarisoa, et al. A short synthesis of troglitazone: An antidiabetic drug for treating insulin resistance. Bioorganic & Medicinal Chemistry Letters. 1999, 9, 3439-3440.42. DeFronzo, R.A. Pharmacologic therapy for type 2 diabetes mellitus. Annals of Internal Medicine. 1999, 131, 281-303.43. Tsuchiya, M., G. Scita, H.-J. Freisleben, et al., Antioxidant radical-scavenging activity of carotenoids and retinoids compared to α-tocopherol, in Methods in Enzymology. 1992, Elsevier. p. 460-472.44. Vajragupta, O., S. Toasaksiri, C. Boonyarat, et al. Chroman amide and nicotinyl amide derivatives: inhibition of lipid peroxidation and protection against head trauma. Free Radical Research. 2000, 32, 145-155.45. Sen, R. and D. Baltimore. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986, 46, 705-716.46. Kim, B.H., A.M. Reddy, K.-H. Lee, et al. Inhibitory mechanism of chroman compound on LPS-induced nitric oxide production and nuclear factor-κB activation. Biochemical and Biophysical Research Communications. 2004, 325, 223-228.47. Kwak, J.-H., J.-K. Jung, and H. Lee. Nuclear factor-kappa B inhibitors; a patent review(2006-2010). Expert Opinion on Therapeutic Patents. 2011, 21, 1897-1910.48. Ma, T., L. Liu, H. Xue, et al. Chemical library and structure-activity relationships of11-demethyl-12-oxo calanolide A analogues as anti-HIV-1 agents. Journal of MedicinalChemistry. 2008, 51, 1432-1446.49. Moniruzzaman, M., G. Lee, S. Bose, et al. Antioxidant and anti-inflammatory activities of N-((3, 4-dihydro-2H-benzo [h] chromene-2-yl) methyl)-4-methoxyaniline in LPS-Induced BV2 microglial cells. Biological and Pharmaceutical Bulletin. 2015, 38, 1831-1835.50. Chang, Y.-C. and M.G. Nair. Metabolism of daidzein and genistein by intestinal bacteria. Journal of Natural Products. 1995, 58, 1892-1896.51. Setchell, K.D., N.M. Brown, and E. Lydeking-Olsen. The clinical importance of the metabolite equol-A clue to the effectiveness of soy and its isoflavones. The Journal of Nutrition. 2002, 132, 3577-3584.52. Yang, Q., Z. Wang, C.H.H. Hor, et al. Asymmetric synthesis of flavanols via Cu-catalyzed kinetic resolution of chromenes and their anti-inflammatory activity. Science Advances. 2022, 8, eabm9603.53. Jiang, X., L. Wu, Y. Xing, et al. Highly enantioselective Friedel-Crafts alkylation reaction catalyzed by rosin-derived tertiary amine-thiourea: synthesis of modified chromanes with anticancer potency. Chemical Communications. 2012, 48, 446-448.54. Abdelatef, S.A., M.T. El-Saadi, N.H. Amin, et al. Design, synthesis and anticancer evaluation of novel Spirobenzo[h] chromene and spirochromane derivatives with dual EGFR and B-RAF inhibitory activities. European Journal of Medicinal Chemistry. 2018, 150, 567-578.55. Gerlach, U., J. Brendel, H.-J. Lang, et al. Synthesis and activity of novel and selectiveIKs-channel blockers. Journal of Medicinal Chemistry. 2001, 44, 3831-3837.56. Sebille, S., D. Gall, P. De Tullio, et al. Design, synthesis, and pharmacological evaluation of R/S-3, 4-dihydro-2, 2-dimethyl-6-halo-4-(phenylaminocarbonylamino)-2H-1-benzopyrans: Toward tissue-selective pancreatic β-cell K ATP channel openers structurally related to (±)-cromakalim. Journal of Medicinal Chemistry. 2006, 49, 4690-4697.57. Kim, Y., J.M. Griffin, M.N.M. Nor, et al. Tonabersat prevents inflammatory damage in the central nervous system by blocking connexin43 hemichannels. Neurotherapeutics. 2017, 14, 1148-1165.58. Chung, S.-T., W.-H. Huang, C.-K. Huang, et al. Synthesis and anti-inflammatory activities of 4H-chromene and chromeno
[2, 3-b] pyridine derivatives. Research on Chemical Intermediates. 2016, 42, 1195-1215.59. Lixiang, Z. Biochemistry. 2015, Beijing: Chinese Medical Science and Technology Publishing House.60. Sanganyado, E., Z. Lu, Q. Fu, et al. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Research. 2017, 124, 527-542.61. Suzuki, T., Y. Kosugi, M. Hosaka, et al. Occurrence and behavior of the chiral anti‐inflammatory drug naproxen in an aquatic environment. Environmental Toxicology andChemistry. 2014, 33, 2671-2678.62. Fryhles., S. Organic Chemistry. Chiral drugs. 2017: John Wiley & Sons.63. Ehringer, H. and O. Hornykiewicz. Verteilung von noradrenalin und dopamin(3-hydroxytyramin) im gehirn des menschen und ihr Verhalten bei erkrankungen desextrapyramidalen systems. Klinische Wochenschrift. 1960, 38, 1236-1239.64. Hardebo, J.E. and C. Owman, Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood‐ brain interface. 1980, Wiley Online Library. p. 1-11.65. Miller, M.T. Thalidomide embryopathy: A model for the study of congenital incomitant horizontal strabismus. Transactions of the American Ophthalmological Society. 1991, 89, 623.66. Gorman, C.A., N.-S. Jiang, R.D. Ellefson, et al. Comparative effectiveness of dextrothyroxine and levothyroxine in correcting hypothyroidism and lowering blood lipid levels in hypothyroid patients. The Journal of Clinical Endocrinology & Metabolism. 1979, 49, 1-7.67. Pitts, N.E., F. Vreeland, G.L. Shaw, et al. Clinical experience with sorbinil-An aldose reductase inhibitor. Metabolism. 1986, 35, 96-100.68. Sarges, R., J. Bordner, B.W. Dominy, et al. Synthesis, absolute configuration and conformation of the aldose reductase inhibitor sorbinil. Journal of Medicinal Chemistry. 1985, 28, 1716-1720.69. Hayakawa, I., S. Atarashi, S. Yokohama, et al. Synthesis and antibacterial activities of optically active ofloxacin. Antimicrobial Agents and Chemotherapy. 1986, 29, 163-164.70. Carlson, J.N., R. Haskew, J. Wacker, et al. Sedative and anxiolytic effects of zopiclone's enantiomers and metabolite. European Journal of Pharmacology. 2001, 415, 181-189.10671. Le Bourdonnec, B., R.T. Windh, L.K. Leister, et al. Spirocyclic delta opioid receptor agonists for the treatment of pain: discovery of N, N-diethyl-3-hydroxy-4-(spiro [chromene-2, 4′-piperidine]-4-yl) benzamide (ADL5747). Journal of Medicinal Chemistry. 2009, 52, 5685-5702.72. Li, M., X. Zhao, W. Yang, et al. Asymmetric synthesis and biological evaluation of3-nitro-2H-chromenes as potential antibacterial agents. Tetrahedron Letters. 2018, 59,3511-3515.73. van Lingen, H.L., W. Zhuang, T. Hansen, et al. Formation of optically active chromanes by catalytic asymmetric tandem oxa-Michael addition-Friedel-Crafts alkylation reactions. Organic & Biomolecular Chemistry. 2003, 1, 1953-1958.74. Thornbury, R.T., V. Saini, T.A. Fernandes, et al. The development and mechanistic investigation of a palladium-catalyzed 1,3-arylfluorination of chromenes. Chemical Science. 2017, 8, 2890-2897.75. Ebe, Y., M. Onoda, T. Nishimura, et al. Iridium-catalyzed regio- and enantioselectivehydroarylation of alkenyl ethers by olefin isomerization. Angewandte Chemie International Edition. 2017, 56, 5607-5611.76. Sakamoto, K. and T. Nishimura. Iridium‐ catalyzed asymmetric hydroarylation of chromene derivatives with aromatic ketones: Enantioselective synthesis of 2 ‐ arylchromanes. Advanced Synthesis & Catalysis. 2019, 361, 2124-2128.77. Yang, Q., Y. Wang, S. Luo, et al. Kinetic resolution and dynamic kinetic resolution of chromene by rhodium‐ catalyzed asymmetric hydroarylation. Angewandte Chemie International Edition. 2019, 58, 5343-5347.78. Yang, Q., S. Li, and J. Wang. Asymmetric synthesis of chiral chromanes by copper-catalyzed hydroamination of 2H‐ chromenes. ChemCatChem. 2020, 12, 3202-3206.79. Gu, X., L. Meng, M. Li, et al. Highly enantioselective access to chiral chromanes andthiochromanes via Cu-catalyzed hydroamination with anthranils. Organic Chemistry Frontiers. 2021, 8, 1563-1568.80. Lemke, M.K., P. Schwab, P. Fischer, et al. A practical access to highly enantiomerically pure flavanones by catalytic asymmetric transfer hydrogenation. Angewandte ChemieInternational Edition. 2013, 52, 11651-11655.81. Zhao, D., B. Beiring, and F. Glorius. Ruthenium– NHC‐ catalyzed asymmetric hydrogenation of flavones and chromones: General access to enantiomerically enriched flavanones, flavanols, chromanones, and chromanols. Angewandte Chemie International Edition. 2013, 52, 8454-8458.82. Ashley, E.R., E.C. Sherer, B. Pio, et al. Ruthenium-catalyzed dynamic kinetic resolution asymmetric transfer hydrogenation of β-chromanones by an elimination-inducedracemization mechanism. ACS Catalysis. 2017, 7, 1446-1451.83. Xia, J., Y. Nie, G. Yang, et al. Iridium-catalyzed asymmetric hydrogenation of 2H-chromenes: A highly enantioselective approach to isoflavan derivatives. Organic Letters. 2017, 19, 4884-4887.84. Tao, L., Q. Zhao, X. Zhang, et al. Facile access to chiral 4-substituted chromanes through Rh-catalyzed asymmetric hydrogenation. Chinese Chemical Letters. 2020, 31, 1859-1862.85. Xu, Y., Y. Luo, J. Ye, et al. Rh-catalyzed sequential asymmetric hydrogenations of3-amino-4-chromones via an unusual dynamic kinetic resolution process. Journal of the American Chemical Society. 2022, 144, 20078-20089.86. Zhang, Y., S. Dong, X. Liu, et al. Asymmetric synthesis of cis‐ 4‐ sminobenzopyranderivatives catalyzed by N, N′‐ dioxide– Sc(OTf)3 complexes. Chemistry– A EuropeanJournal. 2011, 17, 13684-13687.87. Ebe, Y. and T. Nishimura. Iridium-catalyzed annulation of salicylimines with 1,3-dienes. Journal of the American Chemical Society. 2014, 136, 9284-7.88. Hao, X., L. Lin, F. Tan, et al. Asymmetric synthesis of chromans via the Friedel–Craftsalkylation– hemiketalization catalysed by an N,N′ -dioxide scandium(iii) complex. Organic Chemistry Frontiers. 2017, 4, 1647-1650.89. Ren, H., X.-Y. Song, S.R. Wang, et al. Highly enantioselective nickel-catalyzedoxa-
[3+3]-annulation of phenols with benzylidene pyruvates for chiral chromans. Organic Letters. 2018, 20, 3858-3861.10790. Liu, W., P. Zhou, J. Lang, et al. A nickel(ii)-catalyzed asymmetric intramolecular Alder-ene reaction of 1,7-dienes. Chemical Communications 2019, 55, 4479-4482.91. Uozumi, Y., K. Kato, and T. Hayashi. Catalytic asymmetric Wacker-type cyclization. Journal of the American Chemical Society. 1997, 119, 5063-5064.92. Mizuguchi, E. and K. Achiwa. Chiral palladium complex-catalyzed synthesis of optically active vinylchroman. Chemical and Pharmaceutical Bulletin. 1997, 45, 1209-1211.93. Labrosse, J.-R., C. Poncet, P. Lhoste, et al. Asymmetric palladium (0)-mediated synthesis of 2-vinylchroman. Tetrahedron: Asymmetry. 1999, 10, 1069-1078.94. Trost, B.M. and N. Asakawa. An asymmetric synthesis of the vitamin E core by Pd catalyzed discrimination of enantiotopic alkene faces. Synthesis. 1999, 1999, 1491-1494.95. Trost, B.M., H.C. Shen, L. Dong, et al. Unusual effects in the Pd-catalyzed asymmetric allylic alkylations: Synthesis of chiral chromans. Journal of the American Chemical Society. 2003, 125, 9276-9277.96. Tietze, L.F., K.M. Sommer, J. Zinngrebe, et al. Palladium‐ catalyzed enantioselective domino reaction for the efficient synthesis of vitamin E. Angewandte Chemie International Edition. 2005, 44, 257-259.97. Fukamizu, K., Y. Miyake, and Y. Nishibayashi. Ruthenium-catalyzed enantioselectivecarbon-carbon bond forming reaction via allenylidene-ene process: Synthetic approach to chiral heterocycles such as chromane, thiochromane, and 1, 2, 3, 4-tetrahydroquinoline derivatives. Journal of the American Chemical Society. 2008, 130, 10498-10499.98. Cannon, J.S., A.C. Olson, L.E. Overman, et al. Palladium (II)-catalyzed enantioselective synthesis of 2-vinyl oxygen heterocycles. The Journal of Organic Chemistry. 2012, 77,1961-1973.99. Liu, Q., K. Wen, Z. Zhang, et al. Pd (II)-catalyzed asymmetric Wacker-type cyclization for the preparation of 2-vinylchroman derivatives with biphenyl tetraoxazoline ligands. Tetrahedron. 2012, 68, 5209-5215.100. Uria, U., C. Vila, M.Y. Lin, et al. Gold‐ catalyzed asymmetric allylic substitution of free alcohols: An enantioselective approach to chiral chromans with quaternary stereocenters for the synthesis of Vitamin E and analogues. Chemistry-A European Journal. 2014, 20, 13913-13917.101. Wang, P.S., P. Liu, Y.J. Zhai, et al. Asymmetric allylic C-H oxidation for the synthesis of chromans. Journal of the American Chemical Society. 2015, 137, 12732-12735.102. Yang, W., J. Yan, Y. Long, et al. Pd-catalyzed desymmetric intramolecular O-arylation reaction: Enantioselective synthesis of (3, 4-dihydro-2H-chromen-3-yl) methanols. Organic Letters. 2013, 15, 6022-6025.103. Yang, W., Y. Liu, S. Zhang, et al. Copper‐ catalyzed intramolecular desymmetric aryl C-O coupling for the enantioselective construction of chiral dihydrobenzofurans anddihydrobenzopyrans. Angewandte Chemie. 2015, 127, 8929-8932.104. Hu, N., K. Li, Z. Wang, et al. Synthesis of chiral 1, 4‐ benzodioxanes and chromans by enantioselective palladium ‐ catalyzed alkene aryloxyarylation reactions. Angewandte Chemie International Edition. 2016, 55, 5044-5048.105. Alamsetti, S.K., M. Spanka, and C. Schneider. Synergistic rhodium/phosphoric acid catalysis for the enantioselective addition of oxonium ylides to ortho ‐ quinone methides. Angewandte Chemie. 2016, 128, 2438-2442.106. Cai, J., Z.-K. Wang, M. Usman, et al. Enantioselective synthesis of β-quaternarycarbon-containing chromanes and 3, 4-dihydropyrans via Cu-catalyzed intramolecular C-O bond formation. Organic Letters. 2019, 21, 8852-8856.107. Zhang, Z.M., B. Xu, L. Wu, et al. Enantioselective dicarbofunctionalization of unactivated alkenes by palladium‐ catalyzed tandem heck/suzuki coupling reaction. Angewandte Chemie International Edition. 2019, 58, 14653-14659.108. Liu, K., A. Chougnet, and W.D. Woggon. A short route to alpha-tocopherol. Angewandte Chemie International Edition. 2008, 47, 5827-9.109. Nicolaou, K., R.d. Reingruber, D. Sarlah, et al. Enantioselective intramolecularFriedel-Crafts-type α-arylation of aldehydes. Journal of the American Chemical Society. 2009, 131, 2086-2087.110. Lu, H.H., H. Liu, W. Wu, et al. Catalytic asymmetric intramolecular hydroarylations of ω‐108 aryloxy‐ and arylamino‐ tethered α , β‐ unsaturated aldehydes. Chemistry-A European Journal. 2009, 15, 2742-2746.111. Zu, L., S. Zhang, H. Xie, et al. Catalytic asymmetric oxa-Michael- Michael cascade for facile construction of chiral chromans via an aminal intermediate. Organic Letters. 2009, 11, 1627-1630.112. Hong, B.-C., P. Kotame, C.-W. Tsai, et al. Enantioselective total synthesis of (+)-conicol via cascade three-component organocatalysis. Organic Letters. 2010, 12, 776-779.113. Poulsen, P.H., K.S. Feu, B.M. Paz, et al. Organocatalytic asymmetric 1, 6‐ addition/1, 4‐ addition sequence to 2, 4‐ dienals for the synthesis of chiral chromans. Angewandte Chemie. 2015, 127, 8321-8325.114. Chung, Y.K. and G.C. Fu. Phosphine-catalyzed enantioselective synthesis of oxygenheterocycles. Angewandte Chemie International Edition. 2009, 48, 2225-7.115. Wang, X.F., Q.L. Hua, Y. Cheng, et al. Organocatalytic asymmetric sulfa-michael/michael addition reactions: A strategy for the synthesis of highly substituted chromans with a quaternary stereocenter. Angewandte Chemie International Edition. 2010, 49, 8379-83.116. Wang, X.-F., J. An, X.-X. Zhang, et al. Catalytic asymmetric aza-Michael-Michael addition cascade: Enantioselective synthesis of polysubstituted 4-aminobenzopyrans. Organic Letters. 2011, 13, 808-811.117. Hou, W., B. Zheng, J. Chen, et al. Asymmetric synthesis of polysubstituted 4-amino-and 3, 4-diaminochromanes with a chiral multifunctional organocatalyst. Organic Letters. 2012, 14, 2378-2381.118. Jia, Z.-X., Y.-C. Luo, X.-N. Cheng, et al. Organocatalyzed Michael–Michael cascade reaction: Asymmetric synthesis of polysubstituted chromans. The Journal of Organic Chemistry. 2013, 78, 6488-6494.119. Saha, P., A. Biswas, N. Molleti, et al. Enantioselective synthesis of highly substituted chromans via the oxa-Michael-Michael cascade reaction with a bifunctional organocatalyst. The Journal of Organic Chemistry. 2015, 80, 11115-11122.120. Zhao, K., Y. Zhi, T. Shu, et al. Organocatalytic domino oxa-Michael/1,6-addition reactions: Asymmetric synthesis of chromans bearing oxindole scaffolds. Angewandte Chemie International Edition. 2016, 55, 12104-8.121. Zhang, H., S. Lin, and E.N. Jacobsen. Enantioselective selenocyclization via dynamic kinetic resolution of seleniranium ions by hydrogen-bond donor catalysts. Journal of the American Chemical Society. 2014, 136, 16485-8.122. Zhao, J.J., S.B. Sun, S.H. He, et al. Catalytic asymmetric inverse-electron-demandoxa-Diels-Alder reaction of in situ generated ortho-quinone methides with3-methyl-2-vinylindoles. Angewandte Chemie International Edition. 2015, 54, 5460-4.123. Jiang, X.L., S.F. Wu, J.R. Wang, et al. Catalytic asymmetric
[4+2] cyclization of para‐ quinone methide derivatives with 3‐ alkyl‐ 2‐ vinylindoles. Advanced Synthesis & Catalysis. 2018, 360, 4225-4235.124. Lu, Y., H. Nakatsuji, Y. Okumura, et al. Enantioselective halo-oxy- and halo-azacyclizations Induced by chiral amidophosphate catalysts and halo-Lewis acids. Journal of the American Chemical Society. 2018, 140, 6039-6043.125. Uyanik, M., H. Hayashi, and K. Ishihara. High-turnover hypoiodite catalysis for asymmetric synthesis of tocopherols. Science. 2014, 345, 291-294.126. Wang, Y.-M. and S.L. Buchwald. Enantioselective CuH-catalyzed hydroallylation of vinylarenes. Journal of the American Chemical Society. 2016, 138, 5024-5027.127. Han, J.T., W.J. Jang, N. Kim, et al. Asymmetric synthesis of borylalkanes via copper-catalyzed enantioselective hydroallylation. Journal of the American Chemical Society. 2016, 138, 15146-15149.128. Lee, J., S. Torker, and A.H. Hoveyda. Versatile homoallylic boronates by chemo‐ , SN2′‐, diastereo ‐ and enantioselective catalytic sequence of Cu−H addition to vinyl ‐ B(pin)/Allylic substitution. Angewandte Chemie International Edition. 2017, 56, 821-826.129. Xu-Xu, Q.-F., X. Zhang, and S.-L. You. Enantioselective synthesis of 4-allyl tetrahydroquinolines via copper (I) hydride-catalyzed hydroallylation of 1, 2-dihydroquinolines. Organic Letters. 2020, 22, 1530-1534.130. Vita, M.V., P. Caramenti, and J. Waser. Enantioselective synthesis of homoallylic azides and109 nitriles via palladium-catalyzed decarboxylative allylation. Organic Letters. 2015, 17, 5832-5835.131. Brown, M.J., P.S. Carter, A.E. Fenwick, et al. The antimicrobial natural productchuangxinmycin and some synthetic analogues are potent and selective inhibitors of bacterial tryptophanyl tRNA synthetase. Bioorganic & Medicinal Chemistry Letters. 2002, 12, 3171-3174.132. Zimmer, L., G. Fournet, B. Joseph, et al. Carbon-11 labelling of 8 {{3-
[4-(2-
[11C] methoxyphenyl) piperazin-1-yl]-2-hydroxypropyl} oxy} thiochroman, a presynaptic 5-HT1A receptor agonist, and its in vivo evaluation in anaesthetised rat and in awake cat. Nuclear Medicine and Biology. 2003, 30, 541-546.133. Kanbe, Y., M. Kim, M. Nishimoto, et al. Discovery of thiochroman derivatives bearing a carboxy-containing side chain as orally active pure antiestrogens. Bioorganic & Medicinal Chemistry Letters. 2006, 16, 4090-4094.134. Dalla Via, L., S. Marciani Magno, O. Gia, et al. Benzothiopyranoindole-based antiproliferative agents: Synthesis, cytotoxicity, nucleic acids interaction, and topoisomerases inhibition properties. Journal of Medicinal Chemistry. 2009, 52, 5429-5441.135. Han, X.-Y., Y.-F. Zhong, S.-B. Li, et al. Synthesis, characterization and antifungal evaluation of novel thiochromanone derivatives containing indole skeleton. Chemical and Pharmaceutical Bulletin. 2016, 64, 1411-1416.136. Urbatzka, R., S. Freitas, A. Palmeira, et al. Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives. European Journal of Medicinal Chemistry. 2018, 151, 272-284.137. Nussbaumer, P., P. Lehr, and A. Billich. 2-Substituted 4-(thio) chromenone 6-O-sulfamates: Potent inhibitors of human steroid sulfatase. Journal of Medicinal Chemistry. 2002, 45, 4310-4320.138. Horvath, A., P. Nussbaumer, B. Wolff, et al. 2-(1-Adamantyl)-4-(thio) chromenone-6-carboxylic acids: Potent reversible inhibitors of human steroid sulfatase. Journal of Medicinal Chemistry. 2004, 47, 4268-4276.139. Kataoka, T., S.-i. Watanabe, E. Mori, et al. Synthesis and structure-activity relationships of thioflavone derivatives as specific inhibitors of the ERK-MAP kinase signaling pathway. Bioorganic & Medicinal Chemistry. 2004, 12, 2397-2407.140. Kitani, S., K. Sugawara, K. Tsutsumi, et al. Synthesis and characterization of thiochromone S, S-dioxides as new photolabile protecting groups. Chemical Communications. 2008, 2103-2105.141. Hikage, S., Y. Nishiyama, Y. Sasaki, et al. Quantitative photodeprotection assessment of caged resveratrol by fluorescence measurement. ACS omega. 2017, 2, 2300-2307.142. Quaglia, W., M. Giannella, A. Piergentili, et al. 1‘-Benzyl-3, 4-dihydrospiro
[2H-1-benzothiopyran-2, 4‘-piperidine](Spipethiane), a potent and highly selective σ1 ligand. Journal of Medicinal Chemistry. 1998, 41, 1557-1560.143. Liu, R. and S.A. Mabury. First detection of photoinitiators and metabolites in human sera from United States donors. Environmental Science & Technology. 2018, 52, 10089-10096.144. Zhan, T., L. Pan, Z. Liu, et al. Metabolic susceptibility of 2-chlorothioxanthone and its toxic effects on mRNA and protein expression and activities of human CYP1A2 and CYP3A4 enzymes. Environmental Science & Technology. 2018, 52, 11904-11912.145. Li, J., J.C. Lam, W. Li, et al. Occurrence and distribution of photoinitiator additives in paired maternal and cord plasma in a South China population. Environmental Science & Technology. 2019, 53, 10969-10977.146. Weerasekare, G.M., K.D. Berlin, H. Sunkara, et al. Novel chiral, sulfur-containingheteroarotinoids with liquid crystal properties. Phosphorus, Sulfur, and Silicon and theRelated Elements. 2003, 178, 993-1006.147. Liu, J., T. Hu, Z. Li, et al. Intermolecular interaction-induced thermally activated delayed fluorescence based on a thiochromone derivative. The Journal of Physical Chemistry Letters. 2019, 10, 1888-1893.148. Torres-Rodríguez, M.L., E. García-Chávez, M. Berhow, et al. Anti-inflammatory andanti-oxidant effect of Calea urticifolia lyophilized aqueous extract onlipopolysaccharide-stimulated RAW 264.7 macrophages. Journal of Ethnopharmacology. 2016, 188, 266-274.110149. Griffith, B., S. Pendyala, L. Hecker, et al. NOX enzymes and pulmonary disease. Antioxidants & Redox Signaling. 2009, 11, 2505-2516.150. Page, C., D. Blake, and P.G. Winyard. Immunopharmacology of free radical species. 1995: Elsevier.151. Halliwell, B. and J.M. Gutteridge. Free radicals in biology and medicine. 2015, Oxford: Oxford University Press, USA.152. Xu, H.L., J.X. Jiang, W.Z. Chen, et al. Vascular macrophages in atherosclerosis. J Immunol Res. 2019, 2019.153. Vanhoutte, P.M., H. Shimokawa, E.H.C. Tang, et al. Endothelial dysfunction and vascular disease. Acta Physiol. 2009, 196, 193-222.154. Hamalainen, M., R. Nieminen, P. Vuorela, et al. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007, 2007, 45673.155. Forrest, V.J., Y.-H. Kang, D.E. McClain, et al. Oxidative stress-induced apoptosis prevented by Trolox. Free Radical Biology and Medicine. 1994, 16, 675-684.156. Pietta, P.-G. Flavonoids as antioxidants. Journal of Natural Products. 2000, 63, 1035-1042. 157. Rice-Evans, C.A., N.J. Miller, and G. Paganga. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine. 1996, 20, 933-956. 158. Bors, W., W. Heller, C. Michel, et al., Flavonoids as antioxidants: Determination of radical-scavenging efficiencies, in Methods in Enzymology. 1990, Elsevier. p. 343-355.159. Knowles, J.R. Enzyme-catalyzed phosphoryl transfer reactions. Annual Review of Biochemistry. 1980, 49, 877-919.160. Eckstein, F. Nucleoside phosphorothioates. Annual Review of Biochemistry. 1985, 54, 367-402.161. Frey, P.A. Chiral phosphorothioates: stereochemical analysis of enzymatic substitution at phosphorus. Advances in Enzymology and Related Areas of Molecular Biology. 1989, 62, 119-201.162. Mizrahi, V., R. Henrie, J. Marlier, et al. Rate-limiting steps in the DNA polymerase I reaction pathway. Biochemistry. 1985, 24, 4010-4018.163. McSwiggen, J.A. and T.R. Cech. Stereochemistry of RNA cleavage by the tetrahymena ribozyme and evidence that the chemical step is not rate-limiting. Science. 1989, 244, 679-683.164. Griep, M.A., J.A. Reems, M.A. Franden, et al. Reduction of the potent DNA polymerase III holoenzyme 3'. fwdarw. 5'exonuclease activity by template-primer analogues. Biochemistry. 1990, 29, 9006-9014.165. Patel, S.S., I. Wong, and K.A. Johnson. Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry. 1991, 30, 511-525.166. Wong, I., S.S. Patel, and K.A. Johnson. An induced-fit kinetic mechanism for DNA replication fidelity: Direct measurement by single-turnover kinetics. Biochemistry. 1991, 30, 526-537.167. Wang, Y., R. Shi, J. Lin, et al. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy & Environmental Science. 2011, 4, 2922-2929.168. Yu, W., J. Zhang, and T. Peng. New insight into the enhanced photocatalytic activity of N-, Cand S-doped ZnO photocatalysts. Applied Catalysis B: Environmental. 2016, 181, 220-227.169. Fujimoto, A., M. Inai, and T. Masuda. Chemical evidence for the synergistic effect of a cysteinyl thiol on the antioxidant activity of caffeic and dihydrocaffeic esters. Food Chemistry. 2013, 138, 1483-1492.170. Masuda, T., Y. Miura, M. Inai, et al. Enhancing effect of a cysteinyl thiol on the antioxidant activity of flavonoids and identification of the antioxidative thiol adducts of myricetin. Bioscience, Biotechnology, and Biochemistry. 2013, 77, 1753-1758.171. Sivakumar, P., P. Prabhakar, and M. Doble. Synthesis, antioxidant evaluation, and quantitative structure-activity relationship studies of chalcones. Medicinal Chemistry Research. 2011, 20, 482-492.172. Pontiki, E., D. Hadjipavlou-Litina, K. Litinas, et al. Design, synthesis and pharmacobiological evaluation of novel acrylic acid derivatives acting as lipoxygenase and cyclooxygenase-1111 inhibitors with antioxidant and anti-inflammatory activities. European Journal of Medicinal Chemistry. 2011, 46, 191-200.173. Pontiki, E. and D. Hadjipavlou-Litina. Synthesis and pharmacochemical evaluation of novel aryl-acetic acid inhibitors of lipoxygenase, antioxidants, and anti-inflammatory agents. Bioorganic & Medicinal Chemistry. 2007, 15, 5819-5827.174. Abdellatif, K.R., Y. Dong, Q.-H. Chen, et al. Novel (E)-2-(aryl)-3-(4-methanesulfonylphenyl) acrylic ester prodrugs possessing a diazen-1-ium-1, 2-diolate moiety: Design, synthesis, cyclooxygenase inhibition, and nitric oxide release studies. Bioorganic & Medicinal Chemistry. 2007, 15, 6796-6801.175. Pontiki, E.A. and D.J. Hadjipavlou‐ Litina. Synthesis, antioxidant and antiinflammatory activity of novel aryl‐ acetic (III) and aryl‐ hydroxamic acids (IV). ChemInform. 2004, 35.176. Pontiki, E. and D. Hadjipavlou-Litina. Antioxidant and anti-inflammatory activity of aryl-acetic and hydroxamic acids as novel lipoxygenase inhibitors. Medicinal Chemistry. 2006, 2, 251-264.177. Dong, L., L. Yin, Y. Zhang, et al. Anti-inflammatory effects of ononin onlipopolysaccharide-stimulated RAW 264.7 cells. Molecular Immunology. 2017, 83, 46-51.178. Pan, M.-H., C.-S. Lai, and C.-T. Ho. Anti-inflammatory activity of natural dietary flavonoids. Food & Function. 2010, 1, 15-31.179. Pan, M.-H., C.-S. Lai, S. Dushenkov, et al. Modulation of inflammatory genes by natural dietary bioactive compounds. Journal of Agricultural and Food Chemistry. 2009, 57, 4467-4477.180. García-Lafuente, A., E. Guillamón, A. Villares, et al. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflammation Research. 2009, 58, 537-552.181. Mennen, L.I., D. Sapinho, A. de Bree, et al. Consumption of foods rich in flavonoids is related to a decreased cardiovascular risk in apparently healthy French women. The Journal of Nutrition. 2004, 134, 923-926.182. Yaylı, N., S.Ö. Sivrikaya, A. Yaşar, et al. Intramolecular 4π photocyclization of chalconoid-like compounds in solution and antimicrobial activities. Journal of Photochemistry and Photobiology A: Chemistry. 2005, 175, 22-28.183. Calliste, C.-A., J.-C. Le Bail, P. Trouillas, et al. Chalcones: Structural requirements forantioxidant, estrogenic and antiproliferative activities. Anticancer Research. 2001, 21,3949-3956.184. Cho, H., M. Ueda, K. Shima, et al. Dihydropyrimidines: Novel calcium antagonists with potent and long-lasting vasodilative and anti-hypertensive activity. Journal of Medicinal Chemistry. 1989, 32, 2399-2406.185. Rovnyak, G.C., K.S. Atwal, A. Hedberg, et al. Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1, 4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. Journal of Medicinal Chemistry. 1992, 35, 3254-3263.186. Tozkoparan, B., M. Ertan, B. Krebs, et al. Condensed heterocyclic compounds: Synthesis and antiinflammatory activity of novel thiazolo
[3, 2‐ a] pyrimidines. Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry. 1998, 331, 201-206.187. Inami, K., Y. Iizuka, M. Furukawa, et al. Chlorine atom substitution influences radical scavenging activity of 6-chromanol. Bioorganic & Medicinal Chemistry. 2012, 20, 4049-4055.188. Wintere, C., D. Risley, and G. Nuss. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine. 1962, 111, 544-547.189. Cichewicz, R.H., V.A. Kenyon, S. Whitman, et al. Redox inactivation of human 15-lipoxygenase by marine-derived meroditerpenes and synthetic chromanes: archetypes for a unique class of selective and recyclable inhibitors. Journal of the American Chemical Society. 2004, 126, 14910-14920.190. Casas, J., G. Gorchs, F. Sanchez-Baeza, et al. Inhibition of rat liver microsomal lipidperoxidation elicited by simple 2, 2-dimethylchromenes and chromans structurally related to precocenes. Journal of Agricultural and Food Chemistry. 1992, 40, 585-590.191. Goton, N., K. Shimizu, E. Komuro, et al. Antioxidant activities of probucol against lipid peroxidations. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism. 1992, 1128, 147-154.112192. Cevallos-Casals, B.A. and L. Cisneros-Zevallos. Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweetpotato. Journal of Agricultural and Food Chemistry. 2003, 51, 3313-3319.193. Nakanishi, I., T. Kawashima, K. Ohkubo, et al. Electron-transfer mechanism inradical-scavenging reactions by a vitamin E model in a protic medium. Organic &Biomolecular Chemistry. 2005, 3, 626-629.194. Rabie, A.M., A.S. Tantawy, and S.M. Badr. Design, synthesis, and biological evaluation of new 5-substituted-1, 3, 4-thiadiazole-2-thiols as potent antioxidants. Researcher. 2018, 10, 21-43.195. Yayli, N., O. Ücüncü, A. Yaşar, et al. Synthesis and biological activities of N-alkyl derivatives of o-, m-, and p-nitro (E)-4-azachalcones and stereoselective photochemistry in solution, with theoretical calculations. Turkish Journal of Chemistry. 2006, 30, 505-514.196. Choi, M., Y.-S. Hwang, A.S. Kumar, et al. Design and synthesis of 3, 4-dihydro-2H-benzo [h] chromene derivatives as potential NF-κB inhibitors. Bioorganic & Medicinal Chemistry Letters. 2014, 24, 2404-2407.197. Barratt, M.D. Prediction of toxicity from chemical structure. Cell Biology and Toxicology. 2000,16, 1-13.198. Zhang, R., J. Wang, H. Zhu, et al. Lead compound optimization strategy (9) - reducing drug clearance through structure modification. Acta Pharmaceutica Sinica. 2021, 56, 3030-3046.199. Chiodi, D. and Y. Ishihara. “Magic Chloro”: Profound Effects of the Chlorine Atom in Drug Discovery. Journal of Medicinal Chemistry. 2023, 66, 5305-5331.
修改评论