题名 | Low Power Optimisations for IoT Wearable Sensors Based on Evaluation of Nine QRS Detection Algorithms |
作者 | |
通讯作者 | Deepu John |
发表日期 | 2020-08-26
|
DOI | |
发表期刊 | |
卷号 | 1页码:115-123 |
收录类别 | |
语种 | 英语
|
学校署名 | 非南科大
|
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:30
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/731241 |
专题 | 南方科技大学 工学院_深港微电子学院 |
作者单位 | 1.Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 2.School of Electrical and Electronic Engineering, University College Dublin, Dublin 4, D04 V1W8 Ireland 3.Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada |
推荐引用方式 GB/T 7714 |
Jiamin Li,Adnan Ashraf,Barry Cardiff,et al. Low Power Optimisations for IoT Wearable Sensors Based on Evaluation of Nine QRS Detection Algorithms[J]. IEEE Open Journal of Circuits and Systems,2020,1:115-123.
|
APA |
Jiamin Li,Adnan Ashraf,Barry Cardiff,Rajesh C Panicker,Yong Lian,&Deepu John.(2020).Low Power Optimisations for IoT Wearable Sensors Based on Evaluation of Nine QRS Detection Algorithms.IEEE Open Journal of Circuits and Systems,1,115-123.
|
MLA |
Jiamin Li,et al."Low Power Optimisations for IoT Wearable Sensors Based on Evaluation of Nine QRS Detection Algorithms".IEEE Open Journal of Circuits and Systems 1(2020):115-123.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
(2020)Low Power Opti(1546KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论