题名 | Data Driven Domain Appraisal: Extracting Information from Short Dense Texts |
作者 | |
DOI | |
发表日期 | 2019-12-01
|
ISBN | 978-1-7281-2486-5
|
会议录名称 | |
页码 | 2489-2496
|
会议日期 | 6-9 Dec. 2019
|
会议地点 | Xiamen, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Domain names can be traded via online market places and auctions. Speculation can be lucrative, with high value transactions reaching into tens of millions of dollars. This paper proposes a framework for automated domain name appraisal and evaluates several formulations of the problem with real world data. A dynamic nonlinear valuation modelling process is defined using machine learning techniques. Attributes or value factors are derived from short domain name text strings as well as a variety of other contextual data able to be obtained online from open sources. A data set of 9.975 million domains is used for evaluation and results show that search engine query data is a primary driver of value but using extracted text features can facilitate higher performance in distinguishing high value domains particularly when used with ensemble learning. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000555467202081
|
EI入藏号 | 20201108276761
|
EI主题词 | Artificial intelligence
; Big data
; Data mining
; Learning algorithms
; Learning systems
; Natural language processing systems
; Resource valuation
|
EI分类号 | Computer Software, Data Handling and Applications:723
|
Scopus记录号 | 2-s2.0-85080963807
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9002904 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/73739 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology (SUSTech),Department of Computer Science and Engineering,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Liu,Jian,Zeng,Xiangdong,Ghandar,Adam,et al. Data Driven Domain Appraisal: Extracting Information from Short Dense Texts[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:2489-2496.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论