题名 | A dual-grid dual-phase strategy for constrained multi-objective optimization |
作者 | |
DOI | |
发表日期 | 2019-12-01
|
ISBN | 978-1-7281-2486-5
|
会议录名称 | |
页码 | 1881-1888
|
会议日期 | 6-9 Dec. 2019
|
会议地点 | Xiamen, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Constrained multi-objective optimization problems (CMOPs) appear frequently in engineering applications. In some cases, feasible regions are narrow and/or disconnected. For this kind of problems, existing constraint-handling methods, integrated with multi-objective evolutionary algorithms, are easily stuck at local optima. Aiming to strengthen the global search ability, a dual-grid dual-phase strategy is proposed, which is termed dual-grid push and pull search (DPPS). In the DPPS, two populations, corresponding to dual grids, are used individually to explore the feasible and infeasible spaces. Specifically, one population maintains feasible solutions, and the other explores the whole search space without considering constraints. Then, the two populations share useful information and pull each other so as to enable the algorithm to search for the optimal feasible region (i.e., Pareto solution set). To demonstrate the effectiveness of the proposed algorithm, the MOEA/D integrated DPPS (MOEA/D-DPPS) is tested on a frequently-used benchmark suite as well as a newly-constructed suite. Experimental results clearly show the superiority of MOEA/D-DPPS compared with six state-of-the-art algorithms. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | [2017ZT07X386]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000555467201141
|
EI入藏号 | 20201108277080
|
EI主题词 | Artificial intelligence
; Constrained optimization
; Evolutionary algorithms
|
EI分类号 | Artificial Intelligence:723.4
; Optimization Techniques:921.5
; Systems Science:961
|
Scopus记录号 | 2-s2.0-85080889197
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9002872 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/73764 |
专题 | 南方科技大学 |
作者单位 | 1.National University of Defense Technology,College of Systems Engineering,Changsha,410073,China 2.Southern University of Science and Technology,Shenzhen Key Laboratory of Computational Intelligence,University Key Laboratory of Evolving Intelligent,Systems of Guangdong Province,Shenzhen,518055,China |
推荐引用方式 GB/T 7714 |
Ming,Mengjun,Wang,Rui,Zhang,Tao,et al. A dual-grid dual-phase strategy for constrained multi-objective optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1881-1888.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论