中文版 | English
题名

A dual-grid dual-phase strategy for constrained multi-objective optimization

作者
DOI
发表日期
2019-12-01
ISBN
978-1-7281-2486-5
会议录名称
页码
1881-1888
会议日期
6-9 Dec. 2019
会议地点
Xiamen, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Constrained multi-objective optimization problems (CMOPs) appear frequently in engineering applications. In some cases, feasible regions are narrow and/or disconnected. For this kind of problems, existing constraint-handling methods, integrated with multi-objective evolutionary algorithms, are easily stuck at local optima. Aiming to strengthen the global search ability, a dual-grid dual-phase strategy is proposed, which is termed dual-grid push and pull search (DPPS). In the DPPS, two populations, corresponding to dual grids, are used individually to explore the feasible and infeasible spaces. Specifically, one population maintains feasible solutions, and the other explores the whole search space without considering constraints. Then, the two populations share useful information and pull each other so as to enable the algorithm to search for the optimal feasible region (i.e., Pareto solution set). To demonstrate the effectiveness of the proposed algorithm, the MOEA/D integrated DPPS (MOEA/D-DPPS) is tested on a frequently-used benchmark suite as well as a newly-constructed suite. Experimental results clearly show the superiority of MOEA/D-DPPS compared with six state-of-the-art algorithms.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
[2017ZT07X386]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000555467201141
EI入藏号
20201108277080
EI主题词
Artificial intelligence ; Constrained optimization ; Evolutionary algorithms
EI分类号
Artificial Intelligence:723.4 ; Optimization Techniques:921.5 ; Systems Science:961
Scopus记录号
2-s2.0-85080889197
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9002872
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/73764
专题南方科技大学
作者单位
1.National University of Defense Technology,College of Systems Engineering,Changsha,410073,China
2.Southern University of Science and Technology,Shenzhen Key Laboratory of Computational Intelligence,University Key Laboratory of Evolving Intelligent,Systems of Guangdong Province,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Ming,Mengjun,Wang,Rui,Zhang,Tao,et al. A dual-grid dual-phase strategy for constrained multi-objective optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1881-1888.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ming,Mengjun]的文章
[Wang,Rui]的文章
[Zhang,Tao]的文章
百度学术
百度学术中相似的文章
[Ming,Mengjun]的文章
[Wang,Rui]的文章
[Zhang,Tao]的文章
必应学术
必应学术中相似的文章
[Ming,Mengjun]的文章
[Wang,Rui]的文章
[Zhang,Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。