中文版 | English
题名

On the von Neumann entropy of graphs

作者
通讯作者Rossi,Luca
发表日期
2019-08-01
DOI
发表期刊
ISSN
2051-1310
EISSN
2051-1329
卷号7期号:4页码:491-514
摘要
The von Neumann entropy of a graph is a spectral complexity measure that has recently found applications in complex networks analysis and pattern recognition. Two variants of the von Neumann entropy exist based on the graph Laplacian and normalized graph Laplacian, respectively. Due to its computational complexity, previous works have proposed to approximate the von Neumann entropy, effectively reducing it to the computation of simple node degree statistics. Unfortunately, a number of issues surrounding the von Neumann entropy remain unsolved to date, including the interpretation of this spectral measure in terms of structural patterns, understanding the relation between its two variants and evaluating the quality of the corresponding approximations. In this article, we aim to answer these questions by first analysing and comparing the quadratic approximations of the two variants and then performing an extensive set of experiments on both synthetic and real-world graphs. We find that (1) the two entropies lead to the emergence of similar structures, but with some significant differences; (2) the correlation between them ranges from weakly positive to strongly negative, depending on the topology of the underlying graph; (3) the quadratic approximations fail to capture the presence of non-trivial structural patterns that seem to influence the value of the exact entropies; and (4) the quality of the approximations, as well as which variant of the von Neumann entropy is better approximated, depends on the topology of the underlying graph.
关键词
相关链接[Scopus记录]
收录类别
EI ; ESCI
语种
英语
学校署名
通讯
WOS研究方向
Mathematics
WOS类目
Mathematics, Interdisciplinary Applications
WOS记录号
WOS:000481609800002
出版者
EI入藏号
20200908240219
EI主题词
Complex networks ; Entropy ; Graph structures ; Laplace transforms ; Pattern recognition ; Quantum theory
EI分类号
Thermodynamics:641.1 ; Computer Systems and Equipment:722 ; Mathematical Transformations:921.3 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Quantum Theory; Quantum Mechanics:931.4
Scopus记录号
2-s2.0-85081096761
来源库
Scopus
引用统计
被引频次[WOS]:22
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/73871
专题工学院_计算机科学与工程系
作者单位
1.Dipartimento di Scienze Ambientali,,Informatica e Statistica,Università Ca’ Foscari Venezia,Venezia Mestre,via Torino 155,30170,Italy
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Nanshan District, Shenzhen,518055,China
3.School of Engineering and Applied Science,Aston University,Birmingham,Aston Triangle,B4 7ET,United Kingdom
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Minello,Giorgia,Rossi,Luca,Torsello,Andrea. On the von Neumann entropy of graphs[J]. Journal of Complex Networks,2019,7(4):491-514.
APA
Minello,Giorgia,Rossi,Luca,&Torsello,Andrea.(2019).On the von Neumann entropy of graphs.Journal of Complex Networks,7(4),491-514.
MLA
Minello,Giorgia,et al."On the von Neumann entropy of graphs".Journal of Complex Networks 7.4(2019):491-514.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Minello,Giorgia]的文章
[Rossi,Luca]的文章
[Torsello,Andrea]的文章
百度学术
百度学术中相似的文章
[Minello,Giorgia]的文章
[Rossi,Luca]的文章
[Torsello,Andrea]的文章
必应学术
必应学术中相似的文章
[Minello,Giorgia]的文章
[Rossi,Luca]的文章
[Torsello,Andrea]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。