中文版 | English
题名

Hardware-efficient quantum principal component analysis for medical image recognition

作者
通讯作者Nie,Xinfang
发表日期
2024-10-01
DOI
发表期刊
ISSN
2095-0462
EISSN
2095-0470
卷号19期号:5
摘要
Principal component analysis (PCA) is a widely used tool in machine learning algorithms, but it can be computationally expensive. In 2014, Lloyd, Mohseni & Rebentrost proposed a quantum PCA (qPCA) algorithm [Nat. Phys. 10, 631 (2014)] that has not yet been experimentally demonstrated due to challenges in preparing multiple quantum state copies and implementing quantum phase estimations. In this study, we presented a hardware-efficient approach for qPCA, utilizing an iterative approach that effectively resets the relevant qubits in a nuclear magnetic resonance (NMR) quantum processor. Additionally, we introduced a quantum scattering circuit that efficiently determines the eigenvalues and eigenvectors (principal components). As an important application of PCA, we focused on classifying thoracic CT images from COVID-19 patients and achieved high accuracy in image classification using the qPCA circuit implemented on the NMR system. Our experiment highlights the potential of near-term quantum devices to accelerate qPCA, opening up new avenues for practical applications of quantum machine learning algorithms. (Figure presented.)
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
Scopus记录号
2-s2.0-85189649284
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/741043
专题理学院_物理系
量子科学与工程研究院
作者单位
1.Shenzhen Institute for Quantum Science and Engineering and Department of Physics,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Physics,Hong Kong University of Science and Technology,ClearWaterBay, Kowloon,Hong Kong
3.International Quantum Academy,Shenzhen,518055,China
4.Guangdong Provincial Key Laboratory of Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
5.Quantum Science Center of Guangdong–HongKong–Macao Greater Bay Area,Shenzhen–HongKong International Science and Technology Park,Shenzhen,No. 3 Binlang Road, Futian District,518045,China
第一作者单位物理系;  量子科学与工程研究院
通讯作者单位物理系;  量子科学与工程研究院
第一作者的第一单位物理系;  量子科学与工程研究院
推荐引用方式
GB/T 7714
Lin,Zidong,Liu,Hongfeng,Tang,Kai,et al. Hardware-efficient quantum principal component analysis for medical image recognition[J]. Frontiers of Physics,2024,19(5).
APA
Lin,Zidong.,Liu,Hongfeng.,Tang,Kai.,Liu,Yidai.,Che,Liangyu.,...&Lu,Dawei.(2024).Hardware-efficient quantum principal component analysis for medical image recognition.Frontiers of Physics,19(5).
MLA
Lin,Zidong,et al."Hardware-efficient quantum principal component analysis for medical image recognition".Frontiers of Physics 19.5(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin,Zidong]的文章
[Liu,Hongfeng]的文章
[Tang,Kai]的文章
百度学术
百度学术中相似的文章
[Lin,Zidong]的文章
[Liu,Hongfeng]的文章
[Tang,Kai]的文章
必应学术
必应学术中相似的文章
[Lin,Zidong]的文章
[Liu,Hongfeng]的文章
[Tang,Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。