题名 | Hardware-efficient quantum principal component analysis for medical image recognition |
作者 | |
通讯作者 | Nie,Xinfang |
发表日期 | 2024-10-01
|
DOI | |
发表期刊 | |
ISSN | 2095-0462
|
EISSN | 2095-0470
|
卷号 | 19期号:5 |
摘要 | Principal component analysis (PCA) is a widely used tool in machine learning algorithms, but it can be computationally expensive. In 2014, Lloyd, Mohseni & Rebentrost proposed a quantum PCA (qPCA) algorithm [Nat. Phys. 10, 631 (2014)] that has not yet been experimentally demonstrated due to challenges in preparing multiple quantum state copies and implementing quantum phase estimations. In this study, we presented a hardware-efficient approach for qPCA, utilizing an iterative approach that effectively resets the relevant qubits in a nuclear magnetic resonance (NMR) quantum processor. Additionally, we introduced a quantum scattering circuit that efficiently determines the eigenvalues and eigenvectors (principal components). As an important application of PCA, we focused on classifying thoracic CT images from COVID-19 patients and achieved high accuracy in image classification using the qPCA circuit implemented on the NMR system. Our experiment highlights the potential of near-term quantum devices to accelerate qPCA, opening up new avenues for practical applications of quantum machine learning algorithms. (Figure presented.) |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
Scopus记录号 | 2-s2.0-85189649284
|
来源库 | Scopus
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/741043 |
专题 | 理学院_物理系 量子科学与工程研究院 |
作者单位 | 1.Shenzhen Institute for Quantum Science and Engineering and Department of Physics,Southern University of Science and Technology,Shenzhen,518055,China 2.Department of Physics,Hong Kong University of Science and Technology,ClearWaterBay, Kowloon,Hong Kong 3.International Quantum Academy,Shenzhen,518055,China 4.Guangdong Provincial Key Laboratory of Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 5.Quantum Science Center of Guangdong–HongKong–Macao Greater Bay Area,Shenzhen–HongKong International Science and Technology Park,Shenzhen,No. 3 Binlang Road, Futian District,518045,China |
第一作者单位 | 物理系; 量子科学与工程研究院 |
通讯作者单位 | 物理系; 量子科学与工程研究院 |
第一作者的第一单位 | 物理系; 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Lin,Zidong,Liu,Hongfeng,Tang,Kai,et al. Hardware-efficient quantum principal component analysis for medical image recognition[J]. Frontiers of Physics,2024,19(5).
|
APA |
Lin,Zidong.,Liu,Hongfeng.,Tang,Kai.,Liu,Yidai.,Che,Liangyu.,...&Lu,Dawei.(2024).Hardware-efficient quantum principal component analysis for medical image recognition.Frontiers of Physics,19(5).
|
MLA |
Lin,Zidong,et al."Hardware-efficient quantum principal component analysis for medical image recognition".Frontiers of Physics 19.5(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论