中文版 | English
题名

Prioritizing Causation in Decision Trees: A Framework for Interpretable Modeling

作者
通讯作者Chen,Xiaofeng
发表日期
2024-07-01
DOI
发表期刊
ISSN
0952-1976
卷号133
摘要
As a popular machine learning model, decision trees classify and generalize well, but face challenges in engineering applications: 1) Sensitivity to perturbations and lack of interpretability due to correlation reliance. 2) Manual setting of stopping criterion which is unrelated to correlation strength and easily leads to over-partitioning. To address these two challenges, we first theoretically analyze what leads to sub-optimal decision trees. By incorporating causal discovery, this limitation can be attributed to the fact that trees grown with spurious correlations often fall into sub-optimal that lead to overfitting and unfair behaviors. Neglecting causality motivates us to develop a ‘better’ tree with low Kolmogorov complexity and high generalization capability. Then we propose a causality decision tree framework, CausalDT, based on our theoretical expectation, where Hilbert-Schmidt independence criterion serves as a baseline. Unlike previous approaches that prioritize relevance, our framework determines branch nodes based on causation between features, with the significance level determining whether the tree should be expanded further. Experimental results demonstrate that our model maintains performance while reducing average tree depth by 35% on various datasets. Furthermore, our model enhances decision fairness and interpretability.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
EI入藏号
20241215769494
EI主题词
Computational complexity
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Systems Science:961
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85187808154
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/741072
专题工学院_生物医学工程系
作者单位
1.Department of Mathematics,Chongqing Jiaotong University,Chongqing,400074,China
2.Department of Biomedical Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Mathematics and Statistics,Georgia State University,Atlanta,30302,United States
推荐引用方式
GB/T 7714
Zhang,Songming,Chen,Xiaofeng,Ran,Xuming,et al. Prioritizing Causation in Decision Trees: A Framework for Interpretable Modeling[J]. Engineering Applications of Artificial Intelligence,2024,133.
APA
Zhang,Songming,Chen,Xiaofeng,Ran,Xuming,Li,Zhongshan,&Cao,Wenming.(2024).Prioritizing Causation in Decision Trees: A Framework for Interpretable Modeling.Engineering Applications of Artificial Intelligence,133.
MLA
Zhang,Songming,et al."Prioritizing Causation in Decision Trees: A Framework for Interpretable Modeling".Engineering Applications of Artificial Intelligence 133(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Songming]的文章
[Chen,Xiaofeng]的文章
[Ran,Xuming]的文章
百度学术
百度学术中相似的文章
[Zhang,Songming]的文章
[Chen,Xiaofeng]的文章
[Ran,Xuming]的文章
必应学术
必应学术中相似的文章
[Zhang,Songming]的文章
[Chen,Xiaofeng]的文章
[Ran,Xuming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。