题名 | Temporal-VCA: Simulating urban land use change using coupled temporal data and vector cellular automata |
作者 | |
通讯作者 | Yao,Yao |
发表日期 | 2024-06-01
|
DOI | |
发表期刊 | |
ISSN | 0264-2751
|
卷号 | 149 |
摘要 | Vector cellular automata (VCA) are effective models for cadastral-scale land use change modeling, leveraging fine spatial granularity information from cadastral plot data. The temporal dimension has the potential to improve the performance of VCA further. However, it is challenging to precisely capture long sequence information of cadastral plot temporal data for VCA while ensuring accurate capture of fine granularity information simultaneously. Our paper introduces the Temporal-VCA framework, which fully utilizes fine spatial and temporal granularity information of cadastral plot temporal data to enhance the accuracy of VCA. Applying Shenzhen's annual cadastral plot data from 2009 to 2014, this study shows how deep learning techniques can elucidate the temporal aspects of VCA models. Temporal-VCA notably improves precision by up to 22.12 %, outperforming the regular VCA models and traditional raster CA models. It reveals the complex nonlinear temporal patterns within cadastral-scale urban development processes. Designed simulations for 2030, including scenarios of disordered development and ecological protection, highlight the benefits of fully leveraging fine temporal granularity information of temporal data into urban planning, potentially reducing ecological damage by 70 %. Our findings offer a novel methodology for urban land use simulation, with significant implications for urban planning and the advancement of sustainable cities. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
ESI学科分类 | SOCIAL SCIENCES, GENERAL
|
Scopus记录号 | 2-s2.0-85189662763
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/741106 |
专题 | 商学院 |
作者单位 | 1.Key Laboratory of Earth Surface System and Human-Earth Relations,Ministry of Natural Resources of China,Shenzhen,Guangdong Province,518055,China 2.School of Geography and Information Engineering,China University of Geosciences,Wuhan,Hubei Province,430078,China 3.College of Business,Southern University of Science and Technology,Shenzhen,Guangdong Province,518055,China 4.Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities (Ministry of Natural Resources),School of Geographic Sciences,East China Normal University,Shanghai,200241,China 5.Chair of Cartography and Visual Analytics,Technical University of Munich,Munich,Germany 6.School of Resource and Environmental Science,Wuhan University,Wuhan,Hubei Province,430079,China 7.College of Surveying and Geo-Informatics,Tongji University,Shanghai,200092,China |
推荐引用方式 GB/T 7714 |
Yao,Yao,Zhou,Kun,Liu,Chenxi,et al. Temporal-VCA: Simulating urban land use change using coupled temporal data and vector cellular automata[J]. Cities,2024,149.
|
APA |
Yao,Yao.,Zhou,Kun.,Liu,Chenxi.,Sun,Zhenhui.,Chen,Dongsheng.,...&Guan,Qingfeng.(2024).Temporal-VCA: Simulating urban land use change using coupled temporal data and vector cellular automata.Cities,149.
|
MLA |
Yao,Yao,et al."Temporal-VCA: Simulating urban land use change using coupled temporal data and vector cellular automata".Cities 149(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论