中文版 | English
题名

Experimental data-centric prediction of penetration depth and holding capacity of dynamically installed anchors using machine learning

作者
通讯作者Ding,Kailin
发表日期
2024-06-01
DOI
发表期刊
ISSN
0266-352X
EISSN
1873-7633
卷号170
摘要
The visualization of experimental research phenomena and the reliability of experimental data enable their utilization in validating theoretical and numerical methods. However, the existing literature on dynamically installed anchors (DIAs) lacks cohesion, resulting in a reliance on onshore driven pile design theory, as well as empirical or semi-empirical calculation methods for DIA design. Therefore, this study aims to establish an experimental database and propose an data-centric design method for DIAs. The established experimental database comprises 503 sets of experimental data from various sources, including 254 sets of field tests, 210 sets of centrifuge tests and 39 sets of 1g-model tests of seven representative DIAs (i.e., torpedo anchor, DPA, OMNI-Max anchor, DEPLA, L-GIPLA, DPAIII, and fish anchor). The geometric characteristics as well as in-soil installation and loading performance of these DIAs are systematically summarized and explored. Based on this comprehensive experimental database, a novel machine learning (ML) algorithm-based approach is proposed for predicting the penetration depth and holding capacity of DIAs. This research provides a new perspective centered around existing experimental data for the design methodology of DIAs.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85189105335
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/741114
专题工学院_海洋科学与工程系
作者单位
1.Department of Ocean Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian,116024,China
3.Zhejiang Engineering Research Center of Intelligent Urban Infrastructure,Hangzhou City University,Hangzhou,310015,China
第一作者单位海洋科学与工程系
通讯作者单位海洋科学与工程系
第一作者的第一单位海洋科学与工程系
推荐引用方式
GB/T 7714
Fu,Yong,Ding,Kailin,Han,Congcong. Experimental data-centric prediction of penetration depth and holding capacity of dynamically installed anchors using machine learning[J]. Computers and Geotechnics,2024,170.
APA
Fu,Yong,Ding,Kailin,&Han,Congcong.(2024).Experimental data-centric prediction of penetration depth and holding capacity of dynamically installed anchors using machine learning.Computers and Geotechnics,170.
MLA
Fu,Yong,et al."Experimental data-centric prediction of penetration depth and holding capacity of dynamically installed anchors using machine learning".Computers and Geotechnics 170(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fu,Yong]的文章
[Ding,Kailin]的文章
[Han,Congcong]的文章
百度学术
百度学术中相似的文章
[Fu,Yong]的文章
[Ding,Kailin]的文章
[Han,Congcong]的文章
必应学术
必应学术中相似的文章
[Fu,Yong]的文章
[Ding,Kailin]的文章
[Han,Congcong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。