中文版 | English
题名

A Regularized Model for Wetting/Dewetting Problems: Positivity and Asymptotic Analysis

作者
通讯作者Zhang,Zhen
共同第一作者Zhou,Zeyu; Jiang,Wei; Zhang,Zhen
发表日期
2024-06-01
DOI
发表期刊
ISSN
0938-8974
EISSN
1432-1467
卷号34期号:3
摘要

We consider a general regularized variational model for simulating wetting/dewetting phenomena arising from solids or fluids. The regularized model leads to the appearance of a precursor layer which covers the bare substrate, with the precursor height depending on the regularization parameter ε. This model enjoys lots of advantages in analysis and simulations. With the help of the precursor layer, the spatial domain is naturally extended to a larger fixed one in the regularized model, which leads to both analytical and computational eases. There is no need to explicitly track the contact line motion, and difficulties arising from free boundary problems can be avoided. In addition, topological change events can be automatically captured. Under some mild and physically meaningful conditions, we show the positivity-preserving property of the minimizers of the regularized model. By using formal asymptotic analysis and Γ-limit analysis, we investigate the convergence relations between the regularized model and the classical sharp-interface model. Finally, numerical results are provided to validate our theoretical analysis, as well as the accuracy and efficiency of the regularized model.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 共同第一 ; 通讯
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85188090594
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/741120
专题理学院_数学系
理学院_深圳国家应用数学中心
作者单位
1.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
2.School of Mathematics and Statistics,Hubei Key Laboratory of Computational Science,Wuhan University,Wuhan,430072,China
3.Department of Mathematics,National Center for Applied Mathematics (Shenzhen),Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位数学系
通讯作者单位数学系;  深圳国家应用数学中心
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
Zhou,Zeyu,Jiang,Wei,Zhang,Zhen. A Regularized Model for Wetting/Dewetting Problems: Positivity and Asymptotic Analysis[J]. Journal of Nonlinear Science,2024,34(3).
APA
Zhou,Zeyu,Jiang,Wei,&Zhang,Zhen.(2024).A Regularized Model for Wetting/Dewetting Problems: Positivity and Asymptotic Analysis.Journal of Nonlinear Science,34(3).
MLA
Zhou,Zeyu,et al."A Regularized Model for Wetting/Dewetting Problems: Positivity and Asymptotic Analysis".Journal of Nonlinear Science 34.3(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2024Regularizedmodel(1118KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhou,Zeyu]的文章
[Jiang,Wei]的文章
[Zhang,Zhen]的文章
百度学术
百度学术中相似的文章
[Zhou,Zeyu]的文章
[Jiang,Wei]的文章
[Zhang,Zhen]的文章
必应学术
必应学术中相似的文章
[Zhou,Zeyu]的文章
[Jiang,Wei]的文章
[Zhang,Zhen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。