中文版 | English
题名

THREE-DIMENSIONAL LIQUID METAL-BASED CONFORMAL NEURO-INTERFACES FOR HUMAN HIPPOCAMPAL ORGANOIDS

姓名
姓名拼音
WU Yan
学号
11955002
学位类型
博士
学位专业
Doctor of Philosophy (Mechanobiology)
导师
蒋兴宇
导师单位
生物医学工程系
外机构导师
Boon Chuan Low
外机构导师单位
National University of Singapore
论文答辩日期
2024-03-08
论文提交日期
2024-04-26
学位授予单位
National University of Singapore
学位授予地点
Singapore
摘要

The hippocampus is a critical component of the human brain that plays a significant role in memory, learning, and spatial navigation. Due to the limited availability of human brain tissues, studies on the human hippocampus are restricted. The emergence of neural organoids has largely addressed this limitation, with some region-specific organoids exhibiting corresponding cell types and functions. However, the utilization of human hippocampal organoids (hHOs) to study hippocampal functions in vitro presents two significant challenges.  Firstly, the in vitro construction of hHOs remains in the preliminary stage. The hippocampus has a highly specific layered structure and multiple unidirectional neural projection pathways. This special structure still requires a huge boost for hHOs. Secondly, the neural activity of hHOs poses a challenge, as electrophysiological activity is critical to information transmission in neural tissue. However, there is a lack of electronics that apply to organoids. Aiming to these two challenges, this thesis reports a complex system coupling a liquid-metal polymer conductor (MPC)-based conformal neuro-interface with the hHO.

This thesis first refined the protocol derived from the dorsomedial telencephalon (DMT) organoid induction strategy to generate hHOs. This generation was accomplished by demonstrating that Wnt3a and SHH depressed the choroid plexus (ChP) growth and promoted hippocampal fate in vitro. Two types of hippocampal progenitors, HOPX+ and PAX6+ progenitors, and dentate gyrus (DG) PROX1+ granule neurons appeared in the hHO. The comparison between the hHO and a published dataset of the developing human hippocampus revealed a high correlation.

Then, this thesis presents a fabricating method of mesh MPC (mMPC), integrating 64 electrodes within an area of ~2*2 mm. This fabrication produced a sandwich structure with two polymer layers enclosing conductive MPC. Notably, the insulating layer accurately exposed only 15 µm in diameter electrodes. These 64 electrodes were evenly distributed on multi-points of the mesh structure in four directions. Furthermore, two layers of the mMPC were assembled in one device, allowing for the recording of the neural activities of hHOs placed between these two layers. The mesh shape allowed for the cultivation of hHOs without significant damage due to its softness and stretchability. The mMPC could be stretched up to 400% without any leakage of liquid metal and any slit in the mesh while maintaining conductivity of 4000 S/cm. The impedance and root mean square (RMS) noise were relatively low, making the mMPC an ideal neuro-interface.

Finally, the hHO was integrated into the mMPC, and its spontaneous spikes were successfully recorded. Neurons in the tissue performed more active neural firing than monolayer neurons, highlighting the importance of 3D devices for neural organoids. After building a complete system with an electrical stimulus module, temperature control module, and gas control module, the mMPC will be applied to investigate neural circuits in the future.

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2024-04
参考文献列表

[1] G. M. Shepherd, The synaptic organization of the brain, 5th ed. New York;Oxford; Oxford University Press, 2004. doi: 10.1093/acprof:oso/9780195159561.001.1.
[2] S. Seung, Connectome: How the Brain’s Wiring Makes Us Who We Are. HMH, 2012.
[3] T. A. Jarrell et al., “The Connectome of a Decision-Making Neural Network,” Science, vol. 337, no. 6093, pp. 437–444, Jul. 2012, doi: 10.1126/science.1221762.
[4] P. Andersen, R. Morris, D. Amaral, J. O’Keefe, and T. Bliss, The Hippocampus Book. Oxford University Press, USA, 2007.
[5] H. Eichenbaum, The Cognitive Neuroscience of Memory: An Introduction. Oxford University Press, 2011.
[6] Y. Assaf, A. Bouznach, O. Zomet, A. Marom, and Y. Yovel, “Conservation of brain connectivity and wiring across the mammalian class,” Nat Neurosci, vol. 23, no. 7, Art. no. 7, Jul. 2020, doi: 10.1038/s41593-020-0641-7.
[7] P. Panula et al., “The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases,” Neurobiology of Disease, vol. 40, no. 1, pp. 46–57, Oct. 2010, doi: 10.1016/j.nbd.2010.05.010.
[8] A. Beauchamp, Y. Yee, B. C. Darwin, A. Raznahan, R. B. Mars, and J. P. Lerch, “Whole-brain comparison of rodent and human brains using spatial transcriptomics,” eLife, vol. 11, p. e79418, Nov. 2022, doi: 10.7554/eLife.79418.
[9] R. Passingham, “How good is the macaque monkey model of the human brain?,” Current Opinion in Neurobiology, vol. 19, no. 1, pp. 6–11, Feb. 2009, doi: 10.1016/j.conb.2009.01.002.
[10] R. Pryluk, Y. Kfir, H. Gelbard-Sagiv, I. Fried, and R. Paz, “A Tradeoff in the Neural Code across Regions and Species,” Cell, vol. 176, no. 3, pp. 597-609.e18, Jan. 2019, doi: 10.1016/j.cell.2018.12.032.
[11] S. Zhong et al., “Decoding the development of the human hippocampus,” Nature, vol. 577, no. 7791, Art. no. 7791, Jan. 2020, doi: 10.1038/s41586-019-1917-5.
[12] M. Hofer and M. P. Lutolf, “Engineering organoids,” Nat Rev Mater, vol. 6, no. 5, Art. no. 5, May 2021, doi: 10.1038/s41578-021-00279-y.
[13] Z. Zhao et al., “Organoids,” Nat Rev Methods Primers, vol. 2, no. 1, Art. no. 1, Dec. 2022, doi: 10.1038/s43586-022-00174-y.
[14] M. A. Lancaster and J. A. Knoblich, “Organogenesis in a dish: Modeling development and disease using organoid technologies,” Science, vol. 345, no. 6194, p. 1247125, Jul. 2014, doi: 10.1126/science.1247125.
[15] J. Sidhaye and J. A. Knoblich, “Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease,” Cell Death Differ, vol. 28, no. 1, pp. 52–67, Jan. 2021, doi: 10.1038/s41418-020-0566-4.
[16] X. Qian, H. Song, and G. Ming, “Brain organoids: advances, applications and challenges,” Development, vol. 146, no. 8, p. dev166074, Apr. 2019, doi: 10.1242/dev.166074.
[17] O. S. Agboola, X. Hu, Z. Shan, Y. Wu, and L. Lei, “Brain organoid: a 3D technology for investigating cellular composition and interactions in human neurological development and disease models in vitro,” Stem Cell Research & Therapy, vol. 12, no. 1, p. 430, Jul. 2021, doi: 10.1186/s13287-021-02369-8.
[18] I. Chiaradia and M. A. Lancaster, “Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo,” Nat Neurosci, vol. 23, no. 12, Art. no. 12, Dec. 2020, doi: 10.1038/s41593-020-00730-3.
[19] A. M. Paşca et al., “Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture,” Nat Methods, vol. 12, no. 7, pp. 671–678, Jul. 2015, doi: 10.1038/nmeth.3415.
[20] A. Gordon et al., “Long-term maturation of human cortical organoids matches key early postnatal transitions,” Nat Neurosci, vol. 24, no. 3, pp. 331–342, Mar. 2021, doi: 10.1038/s41593-021-00802-y.
[21] S.-J. Yoon et al., “Reliability of human cortical organoid generation,” Nat Methods, vol. 16, no. 1, pp. 75–78, Jan. 2019, doi: 10.1038/s41592-018-0255-0.
[22] W.-K. Huang et al., “Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells,” Cell Stem Cell, vol. 28, no. 9, pp. 1657-1670.e10, Sep. 2021, doi: 10.1016/j.stem.2021.04.006.
[23] J. Jo et al., “Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons,” Cell Stem Cell, vol. 19, no. 2, pp. 248–257, Aug. 2016, doi: 10.1016/j.stem.2016.07.005.
[24] L. M. Smits et al., “Modeling Parkinson’s disease in midbrain-like organoids,” npj Parkinsons Dis., vol. 5, no. 1, Art. no. 1, Apr. 2019, doi: 10.1038/s41531-019-0078-4.
[25] P. Valiulahi et al., “Generation of caudal-type serotonin neurons and hindbrain fate organoids from hPSCs,” Stem Cell Reports, vol. 16, no. 8, pp. 1938–1952, Aug. 2021, doi: 10.1016/j.stemcr.2021.06.006.
[26] J.-H. Lee et al., “Production of human spinal-cord organoids recapitulating neural-tube morphogenesis,” Nat. Biomed. Eng, vol. 6, no. 4, Art. no. 4, Apr. 2022, doi: 10.1038/s41551-022-00868-4.
[27] D. Yu, H. Yan, J. Zhou, X. Yang, Y. Lu, and Y. Han, “A circuit view of deep brain stimulation in Alzheimer’s disease and the possible mechanisms,” Mol Neurodegeneration, vol. 14, no. 1, p. 33, Aug. 2019, doi: 10.1186/s13024-019-0334-4.
[28] N. L. M. Cappaert, N. M. Van Strien, and M. P. Witter, “Chapter 20 -Hippocampal Formation,” in The Rat Nervous System (Fourth Edition), G. Paxinos, Ed., San Diego: Academic Press, 2015, pp. 511–573. doi: 10.1016/B978-0-12-374245-2.00020-6.
[29] E. Forster, S. Zhao, and M. Frotscher, “Laminating the hippocampus,” Nature Reviews Neuroscience, vol. 7, no. 4, pp. 259–268, Apr. 2006, doi: 10.1038/nrn1882.
[30] C. B. Canto and M. P. Witter, “Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex,” Hippocampus, vol. 22, no. 6, pp. 1256–1276, 2012, doi: 10.1002/hipo.20997.
[31] M. Pignatelli and K. S. Rockland, “Chapter 9 - Organization and development of hippocampal circuits,” in Neural Circuit and Cognitive Development (Second Edition), J. Rubenstein, P. Rakic, B. Chen, and K. Y. Kwan, Eds., Academic Press, 2020, pp. 201–219. doi: 10.1016/B978-0-12-814411-4.00009-3.
[32] S. Leutgeb, J. K. Leutgeb, A. Treves, M.-B. Moser, and E. I. Moser, “Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1,” Science, vol. 305, no. 5688, pp. 1295–1298, Aug. 2004, doi: 10.1126/science.1100265.
[33] M. P. Witter, “The perforant path: projections from the entorhinal cortex to the dentate gyrus,” in Progress in Brain Research, H. E. Scharfman, Ed., in The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications, vol. 163. Elsevier, 2007, pp. 43–61. doi: 10.1016/S0079-6123(07)63003-9.
[34] G. Buzsáki and E. I. Moser, “Memory, navigation and theta rhythm in the hippocampal-entorhinal system,” Nat Neurosci, vol. 16, no. 2, Art. no. 2, Feb. 2013, doi: 10.1038/nn.3304.
[35] N. M. van Strien, N. L. M. Cappaert, and M. P. Witter, “The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network,” Nat Rev Neurosci, vol. 10, no. 4, Art. no. 4, Apr. 2009, doi: 10.1038/nrn2614.
[36] J. J. Maller, T. Welton, M. Middione, F. M. Callaghan, J. V. Rosenfeld, and S. M. Grieve, “Revealing the Hippocampal Connectome through Super-Resolution 1150-Direction Diffusion MRI,” Sci Rep, vol. 9, no. 1, Art. no. 1, Feb. 2019, doi: 10.1038/s41598-018-37905-9.
[37] M. S. Cembrowski et al., “Dissociable Structural and Functional Hippocampal Outputs via Distinct Subiculum Cell Classes,” Cell, vol. 173, no. 5, pp. 1280-1292.e18, May 2018, doi: 10.1016/j.cell.2018.03.031.
[38] S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzsáki, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal,” European Journal of Neuroscience, vol. 31, no. 12, pp. 2279–2291, 2010, doi: 10.1111/j.1460-9568.2010.07250.x.
[39] C. Grienberger and A. Konnerth, “Imaging Calcium in Neurons,” Neuron, vol. 73, no. 5, pp. 862–885, Mar. 2012, doi: 10.1016/j.neuron.2012.02.011.
[40] O. Güntürkün, F. Ströckens, and S. Ocklenburg, “Brain Lateralization: A Comparative Perspective,” Physiological Reviews, vol. 100, no. 3, pp. 1019–1063, Jul. 2020, doi: 10.1152/physrev.00006.2019.
[41] S. F. Sorrells et al., “Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults,” Nature, vol. 555, no. 7696, pp. 377–381, Mar. 2018, doi: 10.1038/nature25975.
[42] J. Altman and S. A. Bayer, “Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells,” J. Comp. Neurol., vol. 301, no. 3, pp. 325–342, Nov. 1990, doi: 10.1002/cne.903010302.
[43] J. M. DeSesso, “Vascular ontogeny within selected thoracoabdominal organs and the limbs,” Reproductive Toxicology, vol. 70, pp. 3–20, Jun. 2017, doi: 10.1016/j.reprotox.2016.10.007.
[44] B. L. Finlay and R. B. Darlington, “Linked Regularities in the Development and Evolution of Mammalian Brains,” Science, vol. 268, no. 5217, pp. 1578–1584, 1995.
[45] O. Marín and J. L. R. Rubenstein, “A long, remarkable journey: Tangential migration in the telencephalon,” Nat Rev Neurosci, vol. 2, no. 11, Art. no. 11, Nov. 2001, doi: 10.1038/35097509.
[46] S. A. Moore and A. Iulianella, “Development of the mammalian cortical hem and its derivatives: the choroid plexus, Cajal–Retzius cells and hippocampus,” Open Biology, vol. 11, no. 5, p. 210042, May 2021, doi: 10.1098/rsob.210042.
[47] S. Tole and E. A. Grove, “Detailed Field Pattern Is Intrinsic to the Embryonic Mouse Hippocampus Early in Neurogenesis,” J. Neurosci., vol. 21, no. 5, pp. 1580–1589, Mar. 2001, doi: 10.1523/JNEUROSCI.21-05-01580.2001.
[48] R. Nieuwenhuys, J. Voogd, and C. van Huijzen, Eds., “Telencephalon: Hippocampus and Related Structures,” in The Human Central Nervous System, Berlin, Heidelberg: Springer, 2008, pp. 361–400. doi: 10.1007/978-3-540-34686-9_12.
[49] E. Karzbrun et al., “Human neural tube morphogenesis in vitro by geometric constraints,” Nature, vol. 599, no. 7884, Art. no. 7884, Nov. 2021, doi: 10.1038/s41586-021-04026-9.
[50] S. C. Noctor, V. Martínez-Cerdeño, L. Ivic, and A. R. Kriegstein, “Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases,” Nat Neurosci, vol. 7, no. 2, Art. no. 2, Feb. 2004, doi: 10.1038/nn1172.
[51] M. Florio and W. B. Huttner, “Neural progenitors, neurogenesis and the evolution of the neocortex,” Development, vol. 141, no. 11, pp. 2182–2194, Jun. 2014, doi: 10.1242/dev.090571.
[52] D. A. Colón‐Ramos, “Chapter 2 Synapse Formation in Developing Neural Circuits,” in Current Topics in Developmental Biology, in Development of Neural Circuitry, vol. 87. Academic Press, 2009, pp. 53–79. doi: 10.1016/S0070-2153(09)01202-2.
[53] “Histology Atlas of the Developing Prenatal and Postnatal Mouse Central Nervous System, with Emphasis on Prenatal Days E7.5 to E18.5 - Vivian S. Chen, James P. Morrison, Myra F. Southwell, Julie F. Foley, Brad Bolon, Susan A. Elmore, 2017.” https://journals.sagepub.com/doi/10.1177/0192623317728134 (accessed Feb. 22, 2023).
[54] M. Alonso et al., “Activation of adult-born neurons facilitates learning and memory,” Nat Neurosci, vol. 15, no. 6, pp. 897–904, Jun. 2012, doi: 10.1038/nn.3108.
[55] J. T. Gonçalves, S. T. Schafer, and F. H. Gage, “Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior,” Cell, vol. 167, no. 4, pp. 897–914, Nov. 2016, doi: 10.1016/j.cell.2016.10.021.
[56] C. Q. Doe, “Temporal Patterning in the Drosophila CNS,” Annual Review of Cell and Developmental Biology, vol. 33, no. 1, pp. 219–240, 2017, doi: 10.1146/annurev-cellbio-111315-125210.
[57] “Neuronal specification in the spinal cord: inductive signals and transcriptional codes | Nature Reviews Genetics.” https://www.nature.com/articles/35049541 (accessed Jul. 01, 2023).
[58] N. Antón-Bolaños, A. Espinosa, and G. López-Bendito, “Developmental interactions between thalamus and cortex: a true love reciprocal story,” Current Opinion in Neurobiology, vol. 52, pp. 33–41, Oct. 2018, doi: 10.1016/j.conb.2018.04.018.
[59] G. La Manno et al., “Molecular architecture of the developing mouse brain,” Nature, vol. 596, no. 7870, Art. no. 7870, Aug. 2021, doi: 10.1038/s41586-021-03775-x.
[60] K. Toma, T.-C. Wang, and C. Hanashima, “Encoding and decoding time in neural development,” Development, Growth & Differentiation, vol. 58, no. 1, pp. 59–72, 2016, doi: 10.1111/dgd.12257.
[61] G. Caronia-Brown, M. Yoshida, F. Gulden, S. Assimacopoulos, and E. A. Grove, “The cortical hem regulates the size and patterning of neocortex,” Development, vol. 141, no. 14, pp. 2855–2865, Jul. 2014, doi: 10.1242/dev.106914.
[62] R. Khalaf-Nazzal and F. Francis, “Hippocampal development – Old and new findings,” Neuroscience, vol. 248, pp. 225–242, Sep. 2013, doi: 10.1016/j.neuroscience.2013.05.061.
[63] E. K. Davis, Y. Zou, and A. Ghosh, “Wnts acting through canonical and noncanonical signaling pathways exert opposite effects on hippocampal synapse formation,” Neural Development, vol. 3, no. 1, p. 32, Nov. 2008, doi: 10.1186/1749-8104-3-32.
[64] D.-C. Lie et al., “Wnt signalling regulates adult hippocampal neurogenesis,” Nature, vol. 437, no. 7063, Art. no. 7063, Oct. 2005, doi: 10.1038/nature04108.
[65] R. A. J. Zwamborn, C. Snijders, N. An, A. Thomson, B. P. F. Rutten, and L. de Nijs, “Chapter Seven - Wnt Signaling in the Hippocampus in Relation to Neurogenesis, Neuroplasticity, Stress and Epigenetics,” in Progress in Molecular Biology and Translational Science, B. P. F. Rutten, Ed., in Neuroepigenetics and Mental Illness, vol. 158. Academic Press, 2018, pp. 129–157. doi: 10.1016/bs.pmbts.2018.04.005.
[66] “A local Wnt-3a signal is required for development of the mammalian hippocampus | Development | The Company of Biologists.” https://journals.biologists.com/dev/article/127/3/457/41059/A-local-Wnt-3a signal-is-required-for-development (accessed Jan. 28, 2023).
[67] J. M. Hébert, Y. Mishina, and S. K. McConnell, “BMP Signaling Is Required Locally to Pattern the Dorsal Telencephalic Midline,” Neuron, vol. 35, no. 6, pp. 1029–1041, Sep. 2002, doi: 10.1016/S0896-6273(02)00900-5.
[68] M. Watanabe et al., “BMP4 Sufficiency to Induce Choroid Plexus Epithelial Fate from Embryonic Stem Cell-Derived Neuroepithelial Progenitors,” Journal of Neuroscience, vol. 32, no. 45, pp. 15934–15945, Nov. 2012, doi: 10.1523/JNEUROSCI.3227-12.2012.
[69] M. K. Lehtinen et al., “The Cerebrospinal Fluid Provides a Proliferative Niche for Neural Progenitor Cells,” Neuron, vol. 69, no. 5, pp. 893–905, Mar. 2011, doi: 10.1016/j.neuron.2011.01.023.
[70] V. Krizhanovsky and N. Ben-Arie, “A novel role for the choroid plexus in BMP mediated inhibition of differentiation of cerebellar neural progenitors,” Mechanisms of Development, vol. 123, no. 1, pp. 67–75, Jan. 2006, doi: 10.1016/j.mod.2005.09.005.
[71] “Induction of epidermis and inhibition of neural fate by Bmp-4 | Nature.” https://www.nature.com/articles/376331a0 (accessed Jul. 01, 2023).
[72] A. Parichha et al., “Constitutive activation of canonical Wnt signaling disrupts choroid plexus epithelial fate,” Nat Commun, vol. 13, no. 1, Art. no. 1, Feb. 2022, doi: 10.1038/s41467-021-27602-z.
[73] R. Favaro et al., “Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh,” Nat Neurosci, vol. 12, no. 10, Art. no. 10, Oct. 2009, doi: 10.1038/nn.2397.
[74] R. Machold et al., “Sonic Hedgehog Is Required for Progenitor Cell Maintenance in Telencephalic Stem Cell Niches,” Neuron, vol. 39, no. 6, pp. 937–950, Sep. 2003, doi: 10.1016/S0896-6273(03)00561-0.
[75] V. Borrell et al., “Reelin Regulates the Development and Synaptogenesis of the Layer-Specific Entorhino-Hippocampal Connections,” J. Neurosci., vol. 19, no. 4, pp. 1345–1358, Feb. 1999, doi: 10.1523/JNEUROSCI.19-04-01345.1999.
[76] W. Deng, J. B. Aimone, and F. H. Gage, “New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?,” Nat Rev Neurosci, vol. 11, no. 5, pp. 339–350, May 2010, doi: 10.1038/nrn2822.
[77] C. Schmidt-Hieber and M. F. Nolan, “Synaptic integrative mechanisms for spatial cognition,” Nat Neurosci, vol. 20, no. 11, pp. 1483–1492, Nov. 2017, doi: 10.1038/nn.4652.
[78] C. D. Harvey, F. Collman, D. A. Dombeck, and D. W. Tank, “Intracellular dynamics of hippocampal place cells during virtual navigation,” Nature, vol. 461, no. 7266, Art. no. 7266, Oct. 2009, doi: 10.1038/nature08499.
[79] S. Tonegawa, M. D. Morrissey, and T. Kitamura, “The role of engram cells in the systems consolidation of memory,” Nat Rev Neurosci, vol. 19, no. 8, Art. no. 8, Aug. 2018, doi: 10.1038/s41583-018-0031-2.
[80] T. Kitamura et al., “Engrams and Circuits Crucial for Systems Consolidation of a Memory,” Science, vol. 356, no. 6333, pp. 73–78, Apr. 2017, doi: 10.1126/science.aam6808.
[81] “Deficient neuroegenesis in forebrain-specific presinilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces,” Nature, Dec. 2001, doi: 10.1038/news0111213-2.
[82] S. A. Small, S. A. Schobel, R. B. Buxton, M. P. Witter, and C. A. Barnes, “A pathophysiological framework of hippocampal dysfunction in ageing and disease,” Nat Rev Neurosci, vol. 12, no. 10, pp. 585–601, Oct. 2011, doi: 10.1038/nrn3085.
[83] Y. Lin and G. Chen, “Embryoid body formation from human pluripotent stem cells in chemically defined E8 media,” in StemBook, Cambridge (MA): Harvard Stem Cell Institute, 2008. Accessed: Jul. 01, 2023. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK424234/
[84] K. Zeevaert, M. H. Elsafi Mabrouk, W. Wagner, and R. Goetzke, “Cell Mechanics in Embryoid Bodies,” Cells, vol. 9, no. 10, Art. no. 10, Oct. 2020, doi: 10.3390/cells9102270.
[85] G. Pettinato, X. Wen, and N. Zhang, “Formation of Well-defined Embryoid Bodies from Dissociated Human Induced Pluripotent Stem Cells using Microfabricated Cell-repellent Microwell Arrays,” Sci Rep, vol. 4, no. 1, Art. no. 1, Dec. 2014, doi: 10.1038/srep07402.
[86] H. Kurosawa, “Application of Rho-associated protein kinase (ROCK) inhibitor to human pluripotent stem cells,” J Biosci Bioeng, vol. 114, no. 6, pp. 577–581, Dec. 2012, doi: 10.1016/j.jbiosc.2012.07.013.
[87] T. Matsumoto, M.-H. Kim, and M. Kino-oka, “Effect of Rho–Associated Kinase Inhibitor on Growth Behaviors of Human Induced Pluripotent Stem Cells in Suspension Culture,” Bioengineering (Basel), vol. 9, no. 11, p. 613, Oct. 2022, doi: 10.3390/bioengineering9110613.
[88] K. Watanabe et al., “A ROCK inhibitor permits survival of dissociated human embryonic stem cells,” Nat Biotechnol, vol. 25, no. 6, Art. no. 6, Jun. 2007, doi: 10.1038/nbt1310.
[89] S. M. Chambers, C. A. Fasano, E. P. Papapetrou, M. Tomishima, M. Sadelain, and L. Studer, “Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling,” Nat Biotechnol, vol. 27, no. 3, Art. no. 3, Mar. 2009, doi: 10.1038/nbt.1529.
[90] S. W. Wilson and C. Houart, “Early steps in the development of the forebrain,” Dev Cell, vol. 6, no. 2, pp. 167–181, Feb. 2004, doi: 10.1016/s1534-5807(04)00027-9.
[91] J. Yamashita et al., “Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors,” Nature, vol. 408, no. 6808, pp. 92–96, 2000.
[92] S. Zia et al., “Microglia Diversity in Health and Multiple Sclerosis,” Front Immunol, vol. 11, p. 588021, Nov. 2020, doi: 10.3389/fimmu.2020.588021.
[93] A. Vezzani, S. Balosso, and T. Ravizza, “Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy,” Nat Rev Neurol, vol. 15, no. 8, Art. no. 8, Aug. 2019, doi: 10.1038/s41582-019-0217-x.
[94] H. Keren-Shaul et al., “A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease,” Cell, vol. 169, no. 7, pp. 1276-1290.e17, Jun. 2017, doi: 10.1016/j.cell.2017.05.018.
[95] A. P. Passaro and S. L. Stice, “Electrophysiological Analysis of Brain Organoids: Current Approaches and Advancements,” Frontiers in Neuroscience, vol. 14, 2021, Accessed: Jul. 01, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnins.2020.622137
[96] D. X. Yu et al., “Modeling Hippocampal Neurogenesis Using Human Pluripotent Stem Cells,” Stem Cell Reports, vol. 2, no. 3, pp. 295–310, Mar. 2014, doi: 136 10.1016/j.stemcr.2014.01.009.
[97] Y. Pomeshchik et al., “Human iPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies,” Stem Cell Reports, vol. 15, no. 1, pp. 256–273, Jul. 2020, doi: 10.1016/j.stemcr.2020.06.001.
[98] F. Ciarpella et al., “Murine cerebral organoids develop network of functional neurons and hippocampal brain region identity,” iScience, vol. 24, no. 12, Dec. 2021, doi: 10.1016/j.isci.2021.103438.
[99] H. Sakaguchi et al., “Generation of functional hippocampal neurons from self organizing human embryonic stem cell-derived dorsomedial telencephalic tissue,” Nat Commun, vol. 6, no. 1, Art. no. 1, Nov. 2015, doi: 10.1038/ncomms9896.
[100]A. Sarkar et al., “Efficient Generation of CA3 Neurons from Human Pluripotent Stem Cells Enables Modeling of Hippocampal Connectivity In Vitro,” Cell Stem Cell, vol. 22, no. 5, pp. 684-697.e9, May 2018, doi: 10.1016/j.stem.2018.04.009.
[101]M. Zhang, Z. Tang, X. Liu, and J. Van der Spiegel, “Electronic neural interfaces,” Nat Electron, vol. 3, no. 4, Art. no. 4, Apr. 2020, doi: 10.1038/s41928-020-0390-3.
[102]W. Yang, Y. Gong, and W. Li, “A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants,” Frontiers in Bioengineering and Biotechnology, vol. 8, 2021, Accessed: Feb. 01, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fbioe.2020.622923
[103]G. Hong and C. M. Lieber, “Novel electrode technologies for neural recordings,” Nat Rev Neurosci, vol. 20, no. 6, Art. no. 6, Jun. 2019, doi: 10.1038/s41583-019-0140-6.
[104]M. Kim et al., “Multimodal Characterization of Cardiac Organoids Using Integrations of Pressure-Sensitive Transistor Arrays with Three-Dimensional Liquid Metal Electrodes,” Nano Lett., vol. 22, no. 19, pp. 7892–7901, Oct. 2022, doi: 10.1021/acs.nanolett.2c02790.
[105]M. E. Spira and A. Hai, “Multi-electrode array technologies for neuroscience and cardiology,” Nature Nanotech, vol. 8, no. 2, Art. no. 2, Feb. 2013, doi: 10.1038/nnano.2012.265.
[106]M.-P. Zafeiriou et al., “Developmental GABA polarity switch and neuronal plasticity in Bioengineered Neuronal Organoids,” Nat Commun, vol. 11, no. 1, Art. no. 1, Jul. 2020, doi: 10.1038/s41467-020-17521-w.
[107]Y. Park et al., “Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids,” Sci. Adv., vol. 7, no. 12, p. eabf9153, Mar. 2021, doi: 10.1126/sciadv.abf9153.
[108]J. Carolina and S. Khalil, “Shell microelectrode arrays (MEAs) for brain organoids,” SCIENCE ADVANCES, vol. 8, p. 11, 2022.
[109]T. L. Li et al., “Stretchable mesh microelectronics for the biointegration and stimulation of human neural organoids,” Biomaterials, vol. 290, p. 121825, Nov. 2022, doi: 10.1016/j.biomaterials.2022.121825.
[110] P. Le Floch et al., “Stretchable Mesh Nanoelectronics for 3D Single-Cell Chronic Electrophysiology from Developing Brain Organoids,” Advanced Materials, vol. 34, no. 11, p. 2106829, 2022, doi: 10.1002/adma.202106829.
[111] Q. Li et al., “Cyborg Organoids: Implantation of Nanoelectronics via Organogenesis for Tissue-Wide Electrophysiology,” Nano Lett., vol. 19, no. 8, pp. 5781–5789, Aug. 2019, doi: 10.1021/acs.nanolett.9b02512.
[112] M. Zhang, S. Yao, W. Rao, and J. Liu, “Transformable soft liquid metal micro/nanomaterials,” Materials Science and Engineering: R: Reports, vol. 138, pp. 1–35, Oct. 2019, doi: 10.1016/j.mser.2019.03.001.
[113] L. Tang et al., “Printable Metal-Polymer Conductors for Highly Stretchable Bio Devices,” iScience, vol. 4, pp. 302–311, Jun. 2018, doi: 10.1016/j.isci.2018.05.013.
[114] L. Mou et al., “Highly Stretchable and Biocompatible Liquid Metal-Elastomer Conductors for Self-Healing Electronics,” Small, vol. 16, no. 51, p. 2005336, 2020, doi: 10.1002/smll.202005336.
[115]J. Cheng, J. Shang, S. Yang, J. Dou, X. Shi, and X. Jiang, “Wet-Adhesive Elastomer for Liquid Metal-Based Conformal Epidermal Electronics,” Advanced Functional Materials, vol. 32, no. 25, p. 2200444, 2022, doi: 10.1002/adfm.202200444.
[116] L. Tang, J. Shang, and X. Jiang, “Multilayered electronic transfer tattoo that can enable the crease amplification effect,” Sci. Adv., vol. 7, no. 3, p. eabe3778, Jan. 2021, doi: 10.1126/sciadv.abe3778.
[117] D. Wang, R. Dong, X. Wang, and X. Jiang, “Flexible Electronic Catheter Based on Nanofibers for the In Vivo Elimination of Circulating Tumor Cells,” ACS Nano, vol. 16, no. 4, pp. 5274–5283, Apr. 2022, doi: 10.1021/acsnano.1c09807.
[118]R. Dong et al., “Printed Stretchable Liquid Metal Electrode Arrays for In Vivo Neural Recording,” Small, vol. 17, no. 14, p. 2006612, 2021, doi: 10.1002/smll.202006612.
[119] L. Tang et al., “Printable Metal-Polymer Conductors for Highly Stretchable Bio Devices,” iScience, vol. 4, pp. 302–311, Jun. 2018, doi: 10.1016/j.isci.2018.05.013.
[120]L. Tang, J. Shang, and X. Jiang, “Multilayered electronic transfer tattoo that can enable the crease amplification effect,” Science Advances, vol. 7, no. 3, p. eabe3778, Jan. 2021, doi: 10.1126/sciadv.abe3778.
[121]C. Hang et al., “A Soft and Absorbable Temporary Epicardial Pacing Wire,” Advanced Materials, vol. 33, no. 36, p. 2101447, 2021, doi: 10.1002/adma.202101447.
[122]M. A. Liz, T. Coelho, V. Bellotti, M. I. Fernandez-Arias, P. Mallaina, and L. Obici, “A Narrative Review of the Role of Transthyretin in Health and Disease,” Neurol Ther, vol. 9, no. 2, pp. 395–402, Dec. 2020, doi: 10.1007/s40120-020-00217-0.
[123]M. Watanabe et al., “BMP4 Sufficiency to Induce Choroid Plexus Epithelial Fate from Embryonic Stem Cell-Derived Neuroepithelial Progenitors,” J. Neurosci., vol. 32, no. 45, pp. 15934–15945, Nov. 2012, doi: 10.1523/JNEUROSCI.3227-12.2012.
[124]L. Pellegrini, C. Bonfio, J. Chadwick, F. Begum, M. Skehel, and M. A. Lancaster, “Human CNS barrier-forming organoids with cerebrospinal fluid production,” Science, vol. 369, no. 6500, p. eaaz5626, Jul. 2020, doi: 10.1126/science.aaz5626.
[125]P. J. Yao, R. S. Petralia, and M. P. Mattson, “Sonic Hedgehog Signaling and Hippocampal Neuroplasticity,” Trends in Neurosciences, vol. 39, no. 12, pp. 840–850, Dec. 2016, doi: 10.1016/j.tins.2016.10.001.
[126]A. Abellán, E. Desfilis, and L. Medina, “Combinatorial expression of Lef1, Lhx2, Lhx5, Lhx9, Lmo3, Lmo4, and Prox1 helps to identify comparable subdivisions in the developing hippocampal formation of mouse and chicken,” Frontiers in Neuroanatomy, vol. 8, 2014, Accessed: Feb. 03, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnana.2014.00059
[127]X. Han et al., “FoxG1 Directly Represses Dentate Granule Cell Fate During Forebrain Development,” Frontiers in Cellular Neuroscience, vol. 12, 2018, Accessed: Feb. 03, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fncel.2018.00452
[128]Y. Su et al., “A single-cell transcriptome atlas of glial diversity in the human hippocampus across the postnatal lifespan,” Cell Stem Cell, vol. 29, no. 11, pp. 1594-1610.e8, Nov. 2022, doi: 10.1016/j.stem.2022.09.010.
[129]J. Meunier, N. Borjini, C. Gillis, V. Villard, and T. Maurice, “Brain Toxicity and Inflammation Induced In Vivo in Mice by the Amyloid-␤ Forty-Two Inducer Aftin-4, a Roscovitine Derivative,” p. 19.
[130]J. Tureckova et al., “Compromised Astrocyte Swelling/Volume Regulation in the Hippocampus of the Triple Transgenic Mouse Model of Alzheimer’s Disease,” Front. Aging Neurosci., vol. 13, p. 783120, Jan. 2022, doi: 10.3389/fnagi.2021.783120.
[131]T. Iram et al., “Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17,” Nature, vol. 605, no. 7910, pp. 509–515, May 2022, doi: 10.1038/s41586-022-04722-0.
[132]P. Wörsdörfer et al., “Generation of complex human organoid models including vascular networks by in corporation of mesodermal progenitor cells,” Sci Rep, vol. 9, no. 1, Art. no. 1, Oct. 2019, doi: 10.1038/s41598-019-52204-7.
[133]X.-Y. Sun et al., “Generation of vascularized brain organoids to study neurovascular interactions,” eLife, vol. 11, p. e76707, doi: 10.7554/eLife.76707.
[134]J. O. Akindoyo, M. D. H. Beg, S. Ghazali, M. R. Islam, N. Jeyaratnam, and A. R. Yuvaraj, “Polyurethane types, synthesis and applications – a review,” RSC Adv., vol. 6, no. 115, pp. 114453–114482, Dec. 2016, doi: 10.1039/C6RA14525F.
[135]S. L. Giandomenico et al., “Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output,” Nat Neurosci, vol. 22, no. 4, Art. no. 4, Apr. 2019, doi: 10.1038/s41593-019-0350-2.
[136]Y. Xiang et al., “Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration,” Cell Stem Cell, vol. 21, no. 3, pp. 383-398.e7, Sep. 2017, doi: 10.1016/j.stem.2017.07.007

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/741147
专题南方科技大学
工学院_生物医学工程系
推荐引用方式
GB/T 7714
Wu Y. THREE-DIMENSIONAL LIQUID METAL-BASED CONFORMAL NEURO-INTERFACES FOR HUMAN HIPPOCAMPAL ORGANOIDS[D]. Singapore. National University of Singapore,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11955002-吴艳-生物医学工程系.(9290KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴艳]的文章
百度学术
百度学术中相似的文章
[吴艳]的文章
必应学术
必应学术中相似的文章
[吴艳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。