中文版 | English
题名

Multi-objective evolutionary algorithm with evolutionary-status-driven environmental selection

作者
通讯作者Wang,Zhenkun
发表日期
2024-05-01
DOI
发表期刊
ISSN
0020-0255
卷号669
摘要
The hardly dominated boundary (HDB) is a common feature of multi-objective optimization problems (MOPs). Previous studies have proposed several multi-objective evolutionary algorithms (MOEAs) to deal with the problem characterized by HDBs. Nevertheless, these methods lack consideration of the evolutionary status, potentially resulting in low efficiency when addressing problems that entail a confluence of HDB and other intricate characteristics. This paper proposes an MOEA with evolutionary-status-driven environmental selection (MOEA-ESD) to address such an issue. Specifically, in each generation, the current and historical information are used to evaluate the evolutionary status. Based on the estimated evolutionary status, the proposed MOEA-ESD algorithm adaptively uses three types of environmental selection: the traditional environmental selection (TES) based on Pareto-dominance and crowding distance, a convergence-first environmental selection (CFES) based on Gaussian mixture model clustering, and a diversity-first environmental selection (DFES) based on outlier detection and extreme solutions. In this way, inferior solutions situated on the HDB can be effectively eliminated, thereby facilitating the convergence of the population while concurrently preserving a commendable degree of diversity. Moreover, a set of new benchmark problems with different objective magnitudes and complicated Pareto sets is developed to enrich the features of HDB-MOPs and to verify the algorithm's performance. Our experimental results on 22 HDB-MOPs show the promising performance of the proposed algorithm. The source code of MOEA-ESD is available at https://github.com/CIAM-Group/EvolutionaryAlgorithm_Codes/tree/main/MOEA-ESD.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85190285319
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/741153
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.School of System Design and Intelligent Manufacturing,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.College of Computer Science and Software Engineering,Shenzhen University,Shenzhen,518060,China
4.CASIC Research Institute of Intelligent Decision Engineering,Wuhan,430000,China
第一作者单位系统设计与智能制造学院
通讯作者单位系统设计与智能制造学院;  计算机科学与工程系
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Lin,Kangnian,Li,Genghui,Li,Qingyan,et al. Multi-objective evolutionary algorithm with evolutionary-status-driven environmental selection[J]. Information Sciences,2024,669.
APA
Lin,Kangnian,Li,Genghui,Li,Qingyan,Wang,Zhenkun,Ishibuchi,Hisao,&Zhang,Hu.(2024).Multi-objective evolutionary algorithm with evolutionary-status-driven environmental selection.Information Sciences,669.
MLA
Lin,Kangnian,et al."Multi-objective evolutionary algorithm with evolutionary-status-driven environmental selection".Information Sciences 669(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin,Kangnian]的文章
[Li,Genghui]的文章
[Li,Qingyan]的文章
百度学术
百度学术中相似的文章
[Lin,Kangnian]的文章
[Li,Genghui]的文章
[Li,Qingyan]的文章
必应学术
必应学术中相似的文章
[Lin,Kangnian]的文章
[Li,Genghui]的文章
[Li,Qingyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。