中文版 | English
题名

FairerML: An Extensible Platform for Analysing, Visualising, and Mitigating Biases in Machine Learning [Application Notes]

作者
通讯作者Liu,Jialin
发表日期
2024-05-01
DOI
发表期刊
ISSN
1556-603X
EISSN
1556-6048
卷号19期号:2页码:129-141
摘要
Given the growing concerns about bias in machine learning, dozens of metrics have been proposed to measure the fairness of machine learning. Several platforms have also been developed to compute and illustrate fairness metrics on platform-provided data. However, most platforms do not provide a user-friendly interface for users to upload and evaluate their own data or machine learning models. Moreover, no known platform is capable of training machine learning models, while considering their fairness and accuracy simultaneously. Motivated by the above insufficiency, this work develops FairerML, an extensible platform for analysing, visualising, and mitigating biases in machine learning. Three core functionalities are implemented in FairerML: fairness analysis of user-uploaded datasets, fairness analysis of user-uploaded machine learning models, and the training of a set of Pareto models considering accuracy and fairness metrics simultaneously by using multiobjective learning. The clear visualisation and description of the fairness analysis and the configurable model training process of FairerML make it easy for training fairer machine learning models and for educational purposes. In addition, new fairness metrics and training algorithms can be easily integrated into FairerML thanks to its extendability.
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
Scopus记录号
2-s2.0-85190131910
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/741156
专题南方科技大学
作者单位
1.Southern University of Science and Technology,Shenzhen,China
2.Huawei Technologies Company,Ltd.,Shenzhen,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Yuan,Bo,Gui,Shenhao,Zhang,Qingquan,et al. FairerML: An Extensible Platform for Analysing, Visualising, and Mitigating Biases in Machine Learning [Application Notes][J]. IEEE Computational Intelligence Magazine,2024,19(2):129-141.
APA
Yuan,Bo.,Gui,Shenhao.,Zhang,Qingquan.,Wang,Ziqi.,Wen,Junyi.,...&Yao,Xin.(2024).FairerML: An Extensible Platform for Analysing, Visualising, and Mitigating Biases in Machine Learning [Application Notes].IEEE Computational Intelligence Magazine,19(2),129-141.
MLA
Yuan,Bo,et al."FairerML: An Extensible Platform for Analysing, Visualising, and Mitigating Biases in Machine Learning [Application Notes]".IEEE Computational Intelligence Magazine 19.2(2024):129-141.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuan,Bo]的文章
[Gui,Shenhao]的文章
[Zhang,Qingquan]的文章
百度学术
百度学术中相似的文章
[Yuan,Bo]的文章
[Gui,Shenhao]的文章
[Zhang,Qingquan]的文章
必应学术
必应学术中相似的文章
[Yuan,Bo]的文章
[Gui,Shenhao]的文章
[Zhang,Qingquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。