中文版 | English
题名

High Order Structure-Preserving Finite Difference WENO Schemes for MHD Equations with Gravitation in all Sonic Mach Numbers

作者
通讯作者Xiong,Tao
发表日期
2024-05-01
DOI
发表期刊
ISSN
0885-7474
EISSN
1573-7691
卷号99期号:2
摘要
In this paper, we develop a high-order semi-implicit (SI) structure-preserving finite difference weighted essentially nonoscillatory (WENO) scheme for magnetohydrodynamic (MHD) equations with a gravitational source. The proposed scheme is well-balanced for magnetic steady states, divergence-free for the magnetic field, conservative in the high Mach regime, and exhibits asymptotic preserving (AP) and asymptotically accurate (AA) properties in the incompressible low sonic Mach regime. The constrained transport method is applied to maintain a discrete divergence-free magnetic field. The sonic Mach number ε ranging from 0 to O(1) is taken into account for all Mach flows. One of the crucial and novel ingredients is the addition of an evolution equation for the perturbation of potential temperature as an auxiliary equation to the conservative MHD system. This addition ensures a correct asymptotic low sonic Mach limit and helps to effectively capture shocks in the compressible high Mach regime. A well-balanced finite difference WENO scheme is designed for conservative variables of the resulting system. With stiffly accurate SI implicit-explicit Runge–Kutta time discretizations, the AP and AA properties are formally proven. Numerical experiments are provided to validate the effectiveness and structure-preserving properties of the proposed scheme.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85188550635
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/741177
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
理学院_深圳国家应用数学中心
作者单位
1.School of Mathematical Sciences,Xiamen University,Xiamen,Fujian,361005,China
2.Department of Mathematics & amp; SUSTech International Center for Mathematics,Southern University of Science and Technology,National Center for Applied Mathematics Shenzhen (NCAMS),Shenzhen,Guangdong,518055,China
3.School of Mathematical Sciences,Xiamen University,Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing,Xiamen,Fujian,361005,China
推荐引用方式
GB/T 7714
Chen,Wei,Wu,Kailiang,Xiong,Tao. High Order Structure-Preserving Finite Difference WENO Schemes for MHD Equations with Gravitation in all Sonic Mach Numbers[J]. Journal of Scientific Computing,2024,99(2).
APA
Chen,Wei,Wu,Kailiang,&Xiong,Tao.(2024).High Order Structure-Preserving Finite Difference WENO Schemes for MHD Equations with Gravitation in all Sonic Mach Numbers.Journal of Scientific Computing,99(2).
MLA
Chen,Wei,et al."High Order Structure-Preserving Finite Difference WENO Schemes for MHD Equations with Gravitation in all Sonic Mach Numbers".Journal of Scientific Computing 99.2(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Wei]的文章
[Wu,Kailiang]的文章
[Xiong,Tao]的文章
百度学术
百度学术中相似的文章
[Chen,Wei]的文章
[Wu,Kailiang]的文章
[Xiong,Tao]的文章
必应学术
必应学术中相似的文章
[Chen,Wei]的文章
[Wu,Kailiang]的文章
[Xiong,Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。