题名 | Sorted L1/L2 Minimization for Sparse Signal Recovery |
作者 | |
通讯作者 | Wang,Chao |
发表日期 | 2024-05-01
|
DOI | |
发表期刊 | |
ISSN | 0885-7474
|
EISSN | 1573-7691
|
卷号 | 99期号:2 |
摘要 | This paper introduces a novel approach for recovering sparse signals using sorted L/L minimization. The proposed method assigns higher weights to indices with smaller absolute values and lower weights to larger values, effectively preserving the most significant contributions to the signal while promoting sparsity. We present models for both noise-free and noisy scenarios, and rigorously prove the existence of solutions for each case. To solve these models, we adopt a linearization approach inspired by the difference of convex functions algorithm. Our experimental results demonstrate the superiority of our method over state-of-the-art approaches in sparse signal recovery across various circumstances, particularly in support detection. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85188304171
|
来源库 | Scopus
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/741180 |
专题 | 理学院_统计与数据科学系 |
作者单位 | 1.Department of Statistics and Data Science,Southern University of Science and Technology,Shenzhen,Guangdong Province,518005,China 2.National Centre for Applied Mathematics Shenzhen,Shenzhen,Guangdong Province,518055,China 3.School of Data Science,The Chinese University of Hong Kong,Shenzhen (CUHK-Shenzhen),Shenzhen,518172,China |
第一作者单位 | 统计与数据科学系 |
通讯作者单位 | 统计与数据科学系 |
第一作者的第一单位 | 统计与数据科学系 |
推荐引用方式 GB/T 7714 |
Wang,Chao,Yan,Ming,Yu,Junjie. Sorted L1/L2 Minimization for Sparse Signal Recovery[J]. Journal of Scientific Computing,2024,99(2).
|
APA |
Wang,Chao,Yan,Ming,&Yu,Junjie.(2024).Sorted L1/L2 Minimization for Sparse Signal Recovery.Journal of Scientific Computing,99(2).
|
MLA |
Wang,Chao,et al."Sorted L1/L2 Minimization for Sparse Signal Recovery".Journal of Scientific Computing 99.2(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论