中文版 | English
题名

Impact of Nanoscale Roughness on Heat Transport across the Solid–Solid Interface

作者
通讯作者Chen,Jie; Cheng,Chun
共同第一作者Wang,Jingwei; Zhang,Zhongwei
发表日期
2020-02-01
DOI
发表期刊
ISSN
21967350
EISSN
2196-7350
卷号7期号:4
摘要

The performance of 1D nano/microbeam-based devices greatly relies on heat dissipation to substrates. The surface roughness plays a key role in interfacial heat transport while this issue is seldom investigated due to the difficulty in quantitative determination of thermal contact resistance (TCR) at nanoscale. Here, the impact of interfacial roughness on heat transport at solid–solid interface by taking VO microbeam on Si substrate (VO/Si) as a prototype is investigated. With the increased interface roughness from atomic fluctuation to ≈100 nm, it is found that an unusual uncertainty emerges in thermal interface transport along with the dramatical increase in TCR with two orders of magnitudes. Besides, a single-layer graphene is inserted into VO/Si interface as thermal interface material to study its performance under interface roughness. The inserted graphene not only substantially reduces the TCR but also reduces the uncertainty of thermal interface transport. This enhancement is even remarkable at rougher interface. Microscopic characterization and molecular dynamics simulation suggest that suspended condition and high heat conductivity of graphene on rough surface are responsible for the above effects. This work provides the quantitative evaluation of TCR and contributes to the in-depth understanding on heat transport at imperfect interface.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Shanghai Committee of Science and Technology in China[17ZR1448000]
WOS研究方向
Chemistry ; Materials Science
WOS类目
Chemistry, Multidisciplinary ; Materials Science, Multidisciplinary
WOS记录号
WOS:000504451300001
出版者
EI入藏号
20200107964071
EI主题词
Contact Resistance ; Electronic Equipment ; Graphene ; Heat Resistance ; Heat Transfer ; Molecular Dynamics ; Nanotechnology ; Substrates ; Surface Roughness ; Thermal Conductivity Of Solids ; Thermal Insulating Materials ; Vanadium Dioxide
EI分类号
Heat Insulating Materials:413.2 ; Thermodynamics:641.1 ; Heat Transfer:641.2 ; Electricity: Basic Concepts And Phenomena:701.1 ; Nanotechnology:761 ; Physical Chemistry:801.4 ; Physical Properties Of Gases, Liquids And Solids:931.2 ; Materials Science:951
Scopus记录号
2-s2.0-85077142346
来源库
Scopus
引用统计
被引频次[WOS]:37
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/74667
专题工学院_材料科学与工程系
作者单位
1.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Physics,The Hong Kong University of Science and Technology,Kowloon,Clear Water Bay,999077,Hong Kong
3.Center for Phononics and Thermal Energy Science,School of Physics Science and Engineering,Institute for Advanced Study,Tongji University,Shanghai,200092,China
4.Wuhan National Laboratory for Optoelectronics (WNLO) and the School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan,430074,China
5.Guangdong Provincial Key Laboratory of Energy Materials for Electric Power,Shenzhen,518055,China
第一作者单位材料科学与工程系
通讯作者单位材料科学与工程系
第一作者的第一单位材料科学与工程系
推荐引用方式
GB/T 7714
Wang,Jingwei,Zhang,Zhongwei,Shi,Run,等. Impact of Nanoscale Roughness on Heat Transport across the Solid–Solid Interface[J]. Advanced Materials Interfaces,2020,7(4).
APA
Wang,Jingwei.,Zhang,Zhongwei.,Shi,Run.,Chandrashekar,Bananakere Nanjegowda.,Shen,Nan.,...&Cheng,Chun.(2020).Impact of Nanoscale Roughness on Heat Transport across the Solid–Solid Interface.Advanced Materials Interfaces,7(4).
MLA
Wang,Jingwei,et al."Impact of Nanoscale Roughness on Heat Transport across the Solid–Solid Interface".Advanced Materials Interfaces 7.4(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Jingwei]的文章
[Zhang,Zhongwei]的文章
[Shi,Run]的文章
百度学术
百度学术中相似的文章
[Wang,Jingwei]的文章
[Zhang,Zhongwei]的文章
[Shi,Run]的文章
必应学术
必应学术中相似的文章
[Wang,Jingwei]的文章
[Zhang,Zhongwei]的文章
[Shi,Run]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。