题名 | Accelerating reliable multiscale quantum refinement of protein–drug systems enabled by machine learning |
作者 | |
通讯作者 | Chung,Lung Wa |
发表日期 | 2024-12-01
|
DOI | |
发表期刊 | |
EISSN | 2041-1723
|
卷号 | 15期号:1 |
摘要 | Biomacromolecule structures are essential for drug development and biocatalysis. Quantum refinement (QR) methods, which employ reliable quantum mechanics (QM) methods in crystallographic refinement, showed promise in improving the structural quality or even correcting the structure of biomacromolecules. However, vast computational costs and complex quantum mechanics/molecular mechanics (QM/MM) setups limit QR applications. Here we incorporate robust machine learning potentials (MLPs) in multiscale ONIOM(QM:MM) schemes to describe the core parts (e.g., drugs/inhibitors), replacing the expensive QM method. Additionally, two levels of MLPs are combined for the first time to overcome MLP limitations. Our unique MLPs+ONIOM-based QR methods achieve QM-level accuracy with significantly higher efficiency. Furthermore, our refinements provide computational evidence for the existence of bonded and nonbonded forms of the Food and Drug Administration (FDA)-approved drug nirmatrelvir in one SARS-CoV-2 main protease structure. This study highlights that powerful MLPs accelerate QRs for reliable protein–drug complexes, promote broader QR applications and provide more atomistic insights into drug development. |
相关链接 | [Scopus记录] |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
Scopus记录号 | 2-s2.0-85193532885
|
来源库 | Scopus
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/760920 |
专题 | 理学院_化学系 深圳格拉布斯研究院 |
作者单位 | Shenzhen Grubbs Institute,Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 化学系; 深圳格拉布斯研究院 |
通讯作者单位 | 化学系; 深圳格拉布斯研究院 |
第一作者的第一单位 | 化学系; 深圳格拉布斯研究院 |
推荐引用方式 GB/T 7714 |
Yan,Zeyin,Wei,Dacong,Li,Xin,等. Accelerating reliable multiscale quantum refinement of protein–drug systems enabled by machine learning[J]. Nature Communications,2024,15(1).
|
APA |
Yan,Zeyin,Wei,Dacong,Li,Xin,&Chung,Lung Wa.(2024).Accelerating reliable multiscale quantum refinement of protein–drug systems enabled by machine learning.Nature Communications,15(1).
|
MLA |
Yan,Zeyin,et al."Accelerating reliable multiscale quantum refinement of protein–drug systems enabled by machine learning".Nature Communications 15.1(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论