中文版 | English
题名

LDDMM-Face: Large deformation diffeomorphic metric learning for cross-annotation face alignment

作者
通讯作者Tang,Xiaoying
发表日期
2024-10-01
DOI
发表期刊
ISSN
0031-3203
卷号154
摘要
We propose an innovative, flexible, and consistent cross-annotation face alignment framework, LDDMM-Face, the key contribution of which is a deformation layer that naturally embeds facial geometry in a diffeomorphic way. This enables and solves cross-annotation face alignment tasks that were impossible in the existing works. Instead of predicting facial landmarks via a heatmap or coordinate regression, we formulate the face alignment task in a diffeomorphic registration manner and predict momenta that uniquely parameterize the deformation between the initial boundary and true boundary. We then perform large deformation diffeomorphic metric mapping (LDDMM) simultaneously for curve and landmark to localize the facial landmarks. The novel embedding of LDDMM into a deep network allows LDDMM-Face to consistently annotate facial landmarks without ambiguity and flexibly handle various annotation schemes, and can even predict dense annotations from sparse ones. To the best of our knowledge, this is the first study to leverage learning-based diffeomorphic mapping for face alignment. Our method can be easily integrated into various face alignment networks. We extensively evaluate LDDMM-Face on five benchmark datasets: 300W, WFLW, HELEN, COFW-68, and AFLW. LDDMM-Face distinguishes itself with outstanding performance when dealing with within-dataset cross-annotation learning (sparse-to-dense) and cross-dataset learning (different training and testing datasets). In addition, LDDMM-Face shows promising results on the most challenging task of cross-dataset cross-annotation learning (different training and testing datasets with different annotations). Our codes are available at https://github.com/CRazorback/LDDMM-Face.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
EI入藏号
20242116129071
EI主题词
Alignment ; Deep learning ; Forecasting ; Knowledge management ; Statistical tests
EI分类号
Surveying:405.3 ; Ergonomics and Human Factors Engineering:461.4 ; Mechanical Devices:601.1 ; Computer Applications:723.5 ; Information Retrieval and Use:903.3 ; Mathematical Statistics:922.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85193639656
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/760956
专题南方科技大学
作者单位
1.The University of British Columbia,Vancouver,251 - 2222 Health Sciences Mall,V6T 1Z3,Canada
2.Southern University of Science and Technology,Shenzhen,No. 1088 Xueyuan Road,518055,China
3.The University of Queensland,St Lucia,4067,Australia
4.The Univerisity of Hong Kong,Pok Fu Lam, Hong Kong SAR,Hong Kong
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Yang,Huilin,Lyu,Junyan,Cheng,Pujin,et al. LDDMM-Face: Large deformation diffeomorphic metric learning for cross-annotation face alignment[J]. Pattern Recognition,2024,154.
APA
Yang,Huilin,Lyu,Junyan,Cheng,Pujin,Tam,Roger,&Tang,Xiaoying.(2024).LDDMM-Face: Large deformation diffeomorphic metric learning for cross-annotation face alignment.Pattern Recognition,154.
MLA
Yang,Huilin,et al."LDDMM-Face: Large deformation diffeomorphic metric learning for cross-annotation face alignment".Pattern Recognition 154(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang,Huilin]的文章
[Lyu,Junyan]的文章
[Cheng,Pujin]的文章
百度学术
百度学术中相似的文章
[Yang,Huilin]的文章
[Lyu,Junyan]的文章
[Cheng,Pujin]的文章
必应学术
必应学术中相似的文章
[Yang,Huilin]的文章
[Lyu,Junyan]的文章
[Cheng,Pujin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。