中文版 | English
题名

Joint magnetic resonance imaging artifacts and noise reduction on discrete shape space of images

作者
通讯作者Wu,Zhongke
发表日期
2024-09-01
DOI
发表期刊
ISSN
0031-3203
卷号153
摘要
Magnetic resonance (MR) images can be corrupted by artifacts and noise, potentially leading to misinterpretation of the images. In this paper, we propose a novel approach based on the discrete shape space of images (DSSI) to jointly reduce artifacts and noise in MR images. The proposed method restores MR images in multiple domains based on the distinct generation mechanisms of noise and artifacts. The images in multiple domains are analyzed in a non-Euclidean space. The DSSI is constructed as a Riemannian manifold to measure the intrinsic properties of images. Images are considered shapes from a geometric perspective, and the impact of similarity transformations (e.g., rotation, scaling, and translation) on image analysis is eliminated. The patch-based rank-ordered difference (PROD) detector is defined in k-space within the framework of DSSI to detect and remove sparse outliers that cause artifacts. In addition, a novel similarity function for images is defined using the DSSI and be used to design the improved filter. Finally, the convergence of the improved filter is theoretically analyzed, indicating that our method offers an effective estimator of the ideal image. The experimental results of various MR images demonstrate that the proposed approach outperforms classical and state-of-the-art methods for artifact correction and noise removal, both qualitatively and quantitatively.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
EI入藏号
20241715980946
EI主题词
Geometry ; Image analysis ; Image denoising ; Image enhancement ; Magnetic resonance imaging
EI分类号
Magnetism: Basic Concepts and Phenomena:701.2 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Imaging Techniques:746 ; Acoustic Noise:751.4 ; Mathematics:921
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85191162882
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/760969
专题理学院_深圳国家应用数学中心
作者单位
1.School of Artificial Intelligence,Beiing Normal University,Beijing,No.19, Xinjiekouwai St, Haidian District,100875,China
2.National Center for Applied Mathematics Shenzhen,Southern University of Science and Technology,Shenzhen City,No.1088, Xueyuan St, Nanshan District,518055,China
3.Univ Bretagne Sud,Vannes,CNRS UMR 6205, LMBA,F-56000,France
4.School of Computing and School of Medicine,University of Leeds,Leeds,West Yorkshire,LS29JT,United Kingdom
5.Christabel Pankhurst Institute,Division of Informatics,Imaging,and Data Sciences,School of Health Sciences,and the Department of Computer Science,School of Engineering,University of Manchester,Manchester,Oxford Rd,M139PL,United Kingdom
6.Medical Imaging Research Centre (MIRC),Department of Cardiovascular Sciences,and the Department of Electrical Engineering,KU Leuven,Leuven,Belgium
7.lan Turing Institute,London,United Kingdom
第一作者单位深圳国家应用数学中心
推荐引用方式
GB/T 7714
Liu,Xiangyuan,Wu,Zhongke,Wang,Xingce,et al. Joint magnetic resonance imaging artifacts and noise reduction on discrete shape space of images[J]. Pattern Recognition,2024,153.
APA
Liu,Xiangyuan,Wu,Zhongke,Wang,Xingce,Liu,Quansheng,Pozo,Jose M.,&Frangi,Alejandro F..(2024).Joint magnetic resonance imaging artifacts and noise reduction on discrete shape space of images.Pattern Recognition,153.
MLA
Liu,Xiangyuan,et al."Joint magnetic resonance imaging artifacts and noise reduction on discrete shape space of images".Pattern Recognition 153(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Xiangyuan]的文章
[Wu,Zhongke]的文章
[Wang,Xingce]的文章
百度学术
百度学术中相似的文章
[Liu,Xiangyuan]的文章
[Wu,Zhongke]的文章
[Wang,Xingce]的文章
必应学术
必应学术中相似的文章
[Liu,Xiangyuan]的文章
[Wu,Zhongke]的文章
[Wang,Xingce]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。