中文版 | English
题名

Employing feature mixture for active learning of object detection

作者
通讯作者Zhang,Licheng
发表日期
2024-08-14
DOI
发表期刊
ISSN
0925-2312
EISSN
1872-8286
卷号594
摘要
Active learning aims to select the most informative samples for annotation from a large amount of unlabeled data, in order to reduce time-consuming and labor-intensive manual labeling efforts. Although active learning for object detection has made substantial progress in recent years, developing an accurate and efficient active learning algorithm for object detection remains a challenge. In this paper, we propose a novel unsupervised active learning method for deep object detection. This is based on our hypotheses that an object is more likely to be wrongly predicted by the model, if the prediction changes when its feature representations are slightly mixed by another feature representations at a very small ratio. Such unlabeled samples can be regarded as informative samples that can be selected by active learning. Our method employs base representations of all categories generated from the object detection network to examine the robustness of every detected object. We design a scoring function to calculate the informative score of each unlabeled image. We conduct extensive experiments on two public datasets, i.e., PASCAL VOC and MS-COCO. Experiment results show that our approach consistently outperforms state-of-the-art single-model based methods with significant margins. Our approach also performs on par with multi-model based methods, at much lesser computational cost.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
EI入藏号
20242116138193
EI主题词
Deep learning ; Learning algorithms ; Learning systems ; Object recognition
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Machine Learning:723.4.2
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85193823347
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/760974
专题南方科技大学
作者单位
1.Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
2.Nanyang Technological University,639798,Singapore
3.Peking University,Beijing,100871,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhang,Licheng,Lam,Siew Kei,Luo,Dingsheng,et al. Employing feature mixture for active learning of object detection[J]. Neurocomputing,2024,594.
APA
Zhang,Licheng,Lam,Siew Kei,Luo,Dingsheng,&Wu,Xihong.(2024).Employing feature mixture for active learning of object detection.Neurocomputing,594.
MLA
Zhang,Licheng,et al."Employing feature mixture for active learning of object detection".Neurocomputing 594(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Licheng]的文章
[Lam,Siew Kei]的文章
[Luo,Dingsheng]的文章
百度学术
百度学术中相似的文章
[Zhang,Licheng]的文章
[Lam,Siew Kei]的文章
[Luo,Dingsheng]的文章
必应学术
必应学术中相似的文章
[Zhang,Licheng]的文章
[Lam,Siew Kei]的文章
[Luo,Dingsheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。