中文版 | English
题名

Deep reinforcement learning-based optimal bidding strategy for real-time multi-participant electricity market with short-term load

作者
通讯作者Zhao,Bo
发表日期
2024-08-01
DOI
发表期刊
ISSN
0378-7796
卷号233
摘要
This paper aims to address the bidding strategy optimization in the real-time multi-participant electricity market with short-term load dynamics. In order to avoid the sub-optimal solution and the dependence on the complete information in traditional mathematical programming methods, an electricity market bidding strategy optimization algorithm based on deep reinforcement learning (DRL) is developed. While conventional reinforcement learning algorithms (e.g., Q-learning and deep Q-learning) are only capable of handling simple problems in discrete state spaces, the proximal policy optimization (PPO) algorithm is implemented in the bidding strategy optimization since it can optimize the bidding strategy in the continuous action and state spaces. In order to substantiate the aforementioned perspective, this paper conducts a two-part experimental study. First, experiments which consider the fixed demand load of market participants show that the developed method can reach the Nash equilibrium just like the bi-level optimization, and higher profits can be achieved by adjusting hyperparameters. Then, complex experiments which consider the time-varying demand load verify the DRL-based electricity market bidding strategy performs better than bi-level optimization-based methods and increases the profits of generators.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
EI入藏号
20242016105272
EI主题词
Computation theory ; Deep learning ; Electric industry ; Electric loads ; Game theory ; Learning algorithms ; Profitability ; Reinforcement learning
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Electric Power Systems:706.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Industrial Economics:911.2 ; Probability Theory:922.1
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85193203828
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/760978
专题工学院_系统设计与智能制造学院
作者单位
1.School of Automation,Guangdong University of Technology,Guangzhou,510006,China
2.School of Systems Science,Beijing Normal University,Beijing,100875,China
3.School of System Design and Intelligent Manufacturing,Southern University of Science and Technology,Shenzhen,518055,China
4.Department of Electrical and Computer Engineering,University of Illinois Chicago,Chicago,60607,United States
5.The State key Laboratory for Management and Control of Complex Systems,Institute of Automation,Chinese Academy of Sciences,Beijing,100190,China
6.School of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing,100049,China
推荐引用方式
GB/T 7714
Liu,Chuwei,Rao,Xuan,Zhao,Bo,et al. Deep reinforcement learning-based optimal bidding strategy for real-time multi-participant electricity market with short-term load[J]. Electric Power Systems Research,2024,233.
APA
Liu,Chuwei,Rao,Xuan,Zhao,Bo,Liu,Derong,Wei,Qinglai,&Wang,Yonghua.(2024).Deep reinforcement learning-based optimal bidding strategy for real-time multi-participant electricity market with short-term load.Electric Power Systems Research,233.
MLA
Liu,Chuwei,et al."Deep reinforcement learning-based optimal bidding strategy for real-time multi-participant electricity market with short-term load".Electric Power Systems Research 233(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Chuwei]的文章
[Rao,Xuan]的文章
[Zhao,Bo]的文章
百度学术
百度学术中相似的文章
[Liu,Chuwei]的文章
[Rao,Xuan]的文章
[Zhao,Bo]的文章
必应学术
必应学术中相似的文章
[Liu,Chuwei]的文章
[Rao,Xuan]的文章
[Zhao,Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。