中文版 | English
题名

Influence of acoustic emission sequence length on intelligent identification accuracy of 3-D loaded rock's fracture stage

作者
通讯作者Huang,Jie
发表日期
2024-08-01
DOI
发表期刊
ISSN
1350-6307
卷号162
摘要
Accurate prediction of impending disasters in underground projects is crucial and requires the identification of rock fracture stages. Currently, rock fractures are commonly analyzed using microseismic parameter statistics or individual waveform features for engineering disaster early warning systems. However, rock fracturing is a continuous process, and waveform sequences contain a wealth of information on fractures, which is often overlooked by existing research that generally neglects the information within continuous waveforms. In this study, we leverage acoustic emission (AE) data and employ a transfer learning approach with a convolutional neural network (CNN) to identify rock fracture stages under three-dimensional (3-D) stress paths induced by true triaxial compression tests. Failure experiments were performed on seven sandstone specimens under various 3-D stress paths. To fully utilize the characteristics of the crack rupture sequence, we introduce the concept of AE waveform sequence length. This concept integrates the discrete features of AE time–frequency images, thereby improving the CNN model's performance. Utilizing waveforms of six different lengths (1, 2, 3, 5, 10, and 15) to train the neural networks, our findings reveal that a sequence length of 10 enables the CNN to effectively identify rock fracture stages under 3-D stresses with an accuracy rate of up to 90.4%. This demonstrates that appropriately increasing the sequence length to process the discrete features of AE waveforms structurally is a viable strategy to enhance CNN identification accuracy. Our results underscore that rock fracturing is a sequential process with significant inter-sequence correlations, which critically influence the CNN model's ability to accurately identify rock fracture stages. These insights offer valuable theoretical contributions to the automatic monitoring of rock fracture stages in deep engineering projects.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
EI入藏号
20241916041905
EI主题词
Acoustic emission testing ; Compression testing ; Convolutional neural networks ; Deep learning ; Fracture ; Image enhancement ; Neural network models ; Sandstone
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Minerals:482.2 ; Artificial Intelligence:723.4 ; Acoustic Properties of Materials:751.2 ; Materials Science:951
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85192167977
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/760983
专题理学院_地球与空间科学系
作者单位
1.State Key Laboratory of Coal Mine Disaster Dynamics and Control,School of Resources and Safety Engineering,Chongqing University,Chongqing,400044,China
2.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
3.Institute of Future Civil Engineering Science and Technology,Chongqing Jiaotong University,Chongqing,400074,China
4.Shenzhen Key Laboratory of Deep Underground Engineering Science and Green Energy,Shenzhen University,Shenzhen,518000,China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系
推荐引用方式
GB/T 7714
Song,Zhenlong,Huang,Jie,Deng,Bozhi,et al. Influence of acoustic emission sequence length on intelligent identification accuracy of 3-D loaded rock's fracture stage[J]. Engineering Failure Analysis,2024,162.
APA
Song,Zhenlong.,Huang,Jie.,Deng,Bozhi.,Li,Minghui.,Li,Qianying.,...&Zhang,Chengpeng.(2024).Influence of acoustic emission sequence length on intelligent identification accuracy of 3-D loaded rock's fracture stage.Engineering Failure Analysis,162.
MLA
Song,Zhenlong,et al."Influence of acoustic emission sequence length on intelligent identification accuracy of 3-D loaded rock's fracture stage".Engineering Failure Analysis 162(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song,Zhenlong]的文章
[Huang,Jie]的文章
[Deng,Bozhi]的文章
百度学术
百度学术中相似的文章
[Song,Zhenlong]的文章
[Huang,Jie]的文章
[Deng,Bozhi]的文章
必应学术
必应学术中相似的文章
[Song,Zhenlong]的文章
[Huang,Jie]的文章
[Deng,Bozhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。